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Abstract: We consider the evolution of a quantum particle hopping on a cubic lattice
in any dimension and subject to a potential consisting of a periodic part and a random
part that fluctuates stochastically in time. If the random potential evolves according to
a stationary Markov process, we obtain diffusive scaling for moments of the position
displacement, with a diffusion constant that grows as the inverse square of the disorder
strength at weak coupling. More generally, we show that a central limit theorem holds
such that the square amplitude of the wave packet converges, after diffusive rescaling,
to a solution of a heat equation.

1. Introduction and the Main Results

Diffusive propagation is expected and observed to emerge from wave motion in a ran-
dom medium in a variety of situations. The general intuition behind this expectation is
that repeated scattering from the random medium leads to a loss of coherence, which
in a multi-scattering expansion or path integral formulation suggests a relation with
random walks and diffusion. This intuition is notoriously difficult to make precise in
the context of a static random environment. Indeed, proving the emergence of diffusion
for the Schrödinger wave equation with a weakly disordered potential, in dimension
d ≥ 3, is one of the key outstanding open problems of mathematical physics. For a
random environment that fluctuates stochastically in time, the analysis is simpler and
diffusive propagation has proved amenable to rigorous methods. Heuristically, this sim-
plification is to be expected because time fluctuations suppress recurrence effects in path
expansions.

The present paper is the continuation of a project initiated by the first author and
collaborators [13,14,17,20,25] in which diffusive propagation has been shown to occur
for solutions to a tight binding Schrödinger equation with a random potential evolv-
ing stochastically in time. In the papers [17,20], the following stochastic Schrödinger
equation on �2(Zd) was considered:
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i∂tψt (x) = H0ψt (x) + λV (x, t)ψt (x), (1.1)

with H0 a (non-random) translation invariant Schrödinger operator,λ ≥ 0 a real coupling
constant, and V (x, t) a zero-mean random potential with time dependent stochastic
fluctuations. Thesemodels had been considered previously byTcheremchantsev [27,28],
who obtained diffusive bounds for position moments up to logarithmic corrections.
In [17,20], diffusive scaling for all moments (without logarithms) was proved, under
suitable hypotheses on H0 and V . Furthermore, it was observed that at weak disorder
λ → 0, the corresponding diffusion constant D has the asymptotic form

D ∼ C

λ2
. (1.2)

The divergence of D as λ → 0 seen in Eq. (1.2) is to be expected, since the translation
invariant Schrödinger operator H0 on its own leads to ballistic transport. In [25], the first
author considered the more subtle situation in which the environment is a superposition
of two parts:

i∂tψt (x) = H0ψt (x) + u(x)ψt (x) + λV (x, t)ψt (x), (1.3)

where u is a static random potential that, at λ = 0, gives rise to Anderson localization
(absence of transport). In [25], it was observed that the diffusion constant in this case
has the asymptotic form

D ∼ Cλ2. (1.4)

Taken together, the results in [17,20,25] suggest that solutions to (1.3) with a general
potential u should satisfy diffusion with a diffusion constant whose asymptotic behavior
in the small λ limit is governed by the dynamics of the static Schrödinger operator H0+u.
In this paper, we study this idea in the context of models of the form of Eq. (1.3) but
with periodic u that leads to ballistic transport. We will obtain diffusive propagation
for the evolution, and more generally, a central limit theorem for the square amplitude.
Furthermore, we prove that in this case the asymptotic relation (1.2) holds.

We consider below solutions to Eq. (1.3) with {u(x)}x∈Zd a real valued p-periodic
potential. Recall that given p = {p j }dj=1 ∈ Z

d
>0, a function u : Z

d �→ R is called
p-periodic if

u(x + p j e j ) = u(x) (1.5)

for all 1 ≤ j ≤ d and x ∈ Z
d , where e j denotes the standard basis ofZ

d . Without loss of
generality, we assume that p j ≥ 2 for some j . Otherwise, u is constant and the problem
reduces to that studied in [17]. Throughout this paper, we denote byU the multiplication
operator, (Uψ)(x) = u(x)ψ(x) for ψ(x) ∈ �2(Zd).

The analysis below is applicable to a broad class of operators H0 and V (x, t). To
avoid technicalities in this introduction, let us state the main results in terms of hopping
H0 given by the standard discrete Laplacian on Z

d and potential V (x, t) given by the
following so-called Markovian “flip process,” which is a non-trivial, and somewhat
typical, example of a potential satisfying the general requirements. In general, the random
potential is given by V (x, t) = vx (ω(t)), where ω(t) is an evolving point in an auxiliary
state space �. For the flip process, we take the state space � = {−1, 1}Zd

, and vx (ω) =
ωx , the x th coordinate of ω. Thus the potential V (x, t) = vx (ω(t)) takes only the
values ±1. Now suppose the process ω(t) is obtained by putting independent, identical



Diffusion for a Markovian Periodic Schrödinger Equation 1599

Poisson processes at each site x , and allowing each coordinateωx to flip sign at the times
t1(x) ≤ t2(x) ≤ · · · of the Poisson process. Now the general equation (1.3) becomes:

i∂tψt (x) =
∑

|y−x |=1

ψt (y) + u(x)ψt (x) + λvx (ω(t))ψt (x). (1.6)

The general assumptions we require of the potential are set out in Sect. 2 below.
They allow for a process vx (ω(t)) which is correlated from site to site and need not
take discrete values. A somewhat typical example satisfying our general assumptions,
is given by (x, t) �→ vx (ω(t)) such that

(1) at any fixed time t , the field x �→ vx (ω(t)) is distributed according to the Gibbs
state of a translation-invariant, finite-range lattice Hamiltonian h at a temperature
T for which there is a unique Gibbs state (the high temperature regime); and

(2) the evolution t �→ {vx (ω(t))|x ∈ Z
d} is given by a continuous-time Glauber-type

dynamics for h, preserving the Gibbs state at temperature T .

As long as the lattice Hamiltonian h includes terms coupling the field at different sites,
the resulting dynamics are correlated from site to site.

A sign of diffusive propagation is the existence of a diffusion constant for Eq. (1.6)

D := lim
t→∞

1

t

∑

x

|x |2E(|ψt (x)|2), (1.7)

characterized by the relationship x ∼ √
t in the mean amplitude of evolving wave

packets. Here, and throughout this introduction, E(·) denotes averaging with respect to
the Poisson flipping times t1(x) ≤ t2(x) ≤ · · · and the initial values {ωx }x∈Zd , taken
independent and uniform in {−1, 1}.

We will show below that the limit in Eq. (1.7) exists for any p-periodic potential u
and λ > 0, and furthermore D > 0. To give an unambiguous definition, one may take
the initial value ψ0(x) = δ0(x). However, as we will show, the limit remains the same
for any other choice of (normalized) ψ0 with

∑
x |x |2 |ψ0(x)|2 < ∞.

We refer to the existence of a finite, positive diffusion constant as in Eq. (1.7) as
diffusive scaling. More generally, we have the following

Theorem 1.1. (Central limit theorem) For any periodic potential u and λ > 0, there
is a positive definite d × d matrix D = D(λ, u) such that for any bounded continuous
function f : R

d → R and any normalized ψ0 ∈ �2(Zd) we have

lim
t→∞

∑

x∈Zd

f

(
x√
t

)
E

(
|ψt (x)|2

)
=
∫

Rd
f (r)

(
1

2π

) d
2

e− 1
2

〈
r, D−1r

〉
dr, (1.8)

where ψt (x) is the solution to Eq. (1.6) with initial value ψ0. If furthermore
∑

x (1 +
|x |2) |ψ0(x)|2 < ∞, then diffusive scaling Eq. (1.7) holds with the diffusion constant

D(λ) = lim
t→∞

1

t

∑

x∈Zd

|x |2 E

(
|ψt (x)|2

)
= tr D(λ). (1.9)

Moreover, Eq. (1.8) extends to quadratically bounded continuous f with supx (1 +
|x |2)−1 | f (x)| < ∞.
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It is well known that if λ = 0 in (1.6), then the free periodic Schrödinger equation
has Bloch-wave solutions and exhibits ballistic motion by Floquet theory, see [2,7]:

lim
t→∞

1

t2
∑

x∈Zd

|x |2
∣∣∣
〈
δx , e−it (
+U )δ0

〉∣∣∣
2 ∈ (0,∞). (1.10)

Indeed, strong ballistic motionwas obtained for
+U in [7]. That is, if X is the position
operator and X (t) = eit (
+U )Xe−it (
+U ) its Heisenberg evolution, then there exists a
bounded, self-adjoint operator Q, with ker(Q) = {0}, such that for any ψ in the domain
of X ,

lim
t→∞

1

t
X (t)ψ = Qψ.

If we extend the definition of D(λ) in (1.9) to λ = 0, then D(0) = ∞. We are
primarily interested here in the regime λ ∼ 0, although we will demonstrate diffusion
for all λ > 0. However, for small λ the diffusion constant will be large and have the
following asymptotic behavior as λ → 0:

Theorem 1.2. Under the hypotheses of Theorem 1.1, there is a positive definite d × d
matrix D0 such that

D(λ) = 1

λ2

(
D0 + o(1)

)
and D(λ) = tr D(λ) = 1

λ2

(
tr D0 + o(1)

)
as λ → 0.

(1.11)

The conclusions of Theorems 1.1 and 1.2 are true for Eq. (1.3) under much more
general assumptions on the hopping H0 and the time dependent stochastic potential
V (x, t). We will state the general assumptions and results in Sect. 2.

The rest of the paper is organized as follows: In Sect. 2, a more general class of oper-
ators is introduced and the main result Theorem 2.11, which generalizes Theorems 1.1
and 1.2, is formulated. In Sect. 3 the basic analytic tools of “augmented space analysis,”
developed previously in [17,25], are reviewed. In Sect. 4, we present the heart of our
argument, a block decomposition to study the spectral gap of the induced operator on
the augmented space. Section5 is devoted to a proof of the main result. Certain technical
results used below are collected in appendices.

1.1. History and conjectures. Before turning to the general framework, let us discuss a
history of relatedwork on diffusion, explain the relation of prior works to the present one,
and finally describe several conjectures for more general tight binding models. These
conjectures are closely related to, but do not follow from, the work presented here.

A brief history of related studies is as follows. Ovchinnikov and Erikman obtained
diffusion for a GaussianMarkov (“white noise”) potential [22]. Pillet obtained results on
transience of the wave in relatedmodels and derived a Feynman–Kac representation [23]
which we employ here. Using Pillet’s Feynman–Kac formula, Tchermentchansev [27,
28] showed that positionmoments exhibit diffusive scaling, up to logarithmic corrections
for any bounded potential u(x) in (1.3):

t
s
2

1

(ln t)ν− �
∑

x

|x |sE
(
|ψt (x)|2

)
� t

s
2 (ln t)ν+ , t → ∞. (1.12)
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The case u(x) ≡ 0 (or equivalently, p = (1, . . . , 1)) was considered in the previous
work [17], where (1.12) was shown to hold for s = 2 with ν− = ν+ = 0. Moreover,
the central limit theorem (1.8) and the asymptotic behavior (1.11) were also obtained in
[17]. The proof in [17] was revisited in [20] to obtain diffusive scaling for all position
moments of the mean wave amplitude. The models studied in [17] are special cases of
those considered here.

For a certain class of random potentials u(x), including the case of an i.i.d. potential,
diffusive scaling and the central limit theorem were proved in [25]. Moreover, if H0 +
u exhibits Anderson localization, then O(λ2) asymptotics (1.4) were proved for the
diffusion constant. The arguments in [25] do not require strict independence of the
static potential at different sites. However, the Equivalence of Twisted Shifts assumption
taken in [25] excludes p-periodic background potentials, as well as almost-periodic
background potentials. The periodic case falls in an intermediate regime between the
period-free case and the i.i.d. case. This is a key motivation for us to revisit the proofs in
[17] and [25] and develop the current approach to the p-periodic case, for both diffusive
scaling and limiting behavior.

In [13], Fröhlich and the first author used the techniques of [25] to study diffusion
for a lattice particle governed by a Lindblad equation describing jumps in momentum
driven by interaction with a heat bath. In some sense, this is the quantum analogue of the
classical dynamics of a disordered oscillator system perturbed by noise in the form of a
momentum jump process, considered in [3,4] and reviewed in [5]. A key feature of the
noise in [3,4] is that energy is conserved in the systemwith noise; this is necessary so that
one can speak about heat flux. By contrast, in the present work, and in [13,17,20,25],
energy conservation is broken by the noise. Indeed the only conserved quantity for the
evolution we consider is quantum probability; and it is this quantity which is subject
to diffusive transport. (In comparing the present work with results on Markovian limit
master equations as in [3,4,13], it is useful to note that in the formal derivation of
quantum or classical master equations one obtains the square of the coupling to the
heat bath multiplying the Lindbladian or stochastic term. Thus it is the square of the
coupling λ2 which should be compared with the coupling constants in [3,4,13] and the
scaling D(λ) ∼ D0λ

−2 seen here is consistent with the inverse linear scaling seen in
those works.)

That diffusive transport emerges from (1.3) very much depends on the fact that it
is a lattice, or tight-binding, equation. A time-dependent potential coupled with the
unbounded kinetic energy present in continuum models can lead to stochastic accelera-
tion resulting in super-diffusive, or even super-ballistic, transport. Stochastic acceleration
has been well studied in the context of classical systems, see for example [1,24,26]. For
quantum systems in the continuum, transport has been studied in the context of Gaussian
white-noise potentials [11,12,15,16], for which the super-ballistic transport 〈x2〉 ∼ t3

has been proved.
There are also parallel works on diffusion for the continuum Schrödinger equation

with Markovian forcing and periodic boundary conditions in space, e.g., [10]. One
physical interpretation of this continuous model is as a rigid rotator coupled to a classical
heat bath. In [10], the Hs norm of the wave function is shown to behave as t s/4. It is
interesting to point out that, as in the present work, the existence of a spectral gap for
the Markov generator is essential both for their analysis and the results. In many models
withMarkovian forcing, the potential V (x, t) is quite rough. However, Bourgain studied
the case where V (x, t) is analytic/smooth in x and quasi-periodic/smooth in t . In [6], he
showed that energy may grow logarithmically. We refer readers to, e.g., [8,21,29], for
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more work on Sobolev norm growth and controllability of Schrödinger equations with
time-dependent potentials.

The proof we present here is a generalization of that in [17]. Some of the arguments
are essentially standard fare and parallel the work of [17] closely. However, there are
three places in the proof where some substantially new arguments were needed. First,
the Fourier analysis (see Sect. 3.2) in our work is more subtle and requires careful con-
sideration due to the periodic potential. The extension developed here is of independent
interest and may benefit the future study of the limit-periodic and quasi-periodic cases.
Secondly, the spectral gap Lemma 4.8 and the proof of the main results in Sect. 5 are
technically more involved in the current work. The interaction between the periodic part
and the hopping terms complicates the block decomposition on the augmented space.
Finally, in the present proof, the analysis of the asymptotic behavior of the diffusion
constant is quite a bit more involved. In [17], (1.2) essentially follows from a formula
derived for the diffusion constant in the midst of the proof of diffusion. Unfortunately,
Theorem 1.2 in the p-period case does not have such a simple proof and is obtained
by a new approach. The proof is based on an interesting observation linking the ballis-
tic motion of the unperturbed part to the diffusive scaling. This observation is part of
the motivation behind our conjecture below on the more general situations, linking the
transport exponent to the limiting behavior of the diffusion constant.

In light of the present work, it is natural to ask what can be said about Eq. (1.3) with
u a general ergodic/deterministic potential. In particular,

(1) Underwhich hypotheses on u dowe have diffusive propagation over long time scales?
(2) When diffusion holds, what is the limiting behavior of the diffusion constant with

respect to the disorder coupling constant?

Based on the limiting behavior of the diffusion constant in the periodic case and in the
i.i.d case, it is natural to make the following

Conjecture 1.3. For the “flip process” vx (ω(t)) with any disorder strength λ > 0, and
for any bounded potential u(x) on Z

d in (1.6), there exist positive, and finite, upper and
lower diffusion constants, D(λ), D(λ) ∈ (0,∞) such that

D(λ) := lim inf
t→∞

1

t

∑

x∈Zd

|x |2 E

(
|ψt (x)|2

)
≤ lim sup

t→∞
1

t

∑

x∈Zd

|x |2 E

(
|ψt (x)|2

)
=: D(λ).

(1.13)

Suppose 
 + U exhibits ballistic motion, then D(λ), D(λ) ∼ O(λ−2) for λ ∼ 0.
Suppose 
 +U exhibits dynamical localization, then D(λ), D(λ) ∼ O(λ2) for λ ∼ 0.

Remark 1.4. (1) We state the conjecture for the “flip process”, similar conjectures can
be made for the general equations which will be introduced in Sect. 2. (2) More gen-
erally, if the unperturbed equation has transport exponent ρ ∈ [0, 2], then we expect
D(λ), D(λ) ∼ O(λ2−2ρ). (3) Here, we also want to bring reader’s attention to the recent
work [19], though not directly relevant to our current paper, on the ballistic transport for
the Schrödinger operator with limit-periodic or quasi-periodic potential in dimension
two.

If the unperturbed part is given by the almost Mathieu operators with parameters
g ∈ R, θ, α ∈ [0, 1], we have the following AMO-Markovian equation on �2(Z):

i∂tψt (x) = ψt (x + 1) + ψt (x − 1) + 2g cos 2π(θ + xα)ψt (x) + λv(ωx (t))ψt (x).
(1.14)
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Conjecture 1.5. For almost every θ, α ∈ [0, 1], the AMO-Markovian equation has a
diffusion constant D(g, λ) ∈ (0,∞)which is a smooth function for all (g, λ) ∈ R×R

+.
Moreover, D(g, λ) ∼ O(λ2) for all |g| > 1 and D(g, λ) ∼ O(λ−2) for all |g| < 1.

2. General Assumptions and the Main Result

We study a more general class of equations with hopping terms other than nearest
neighbor and a perturbing potential V that is not necessarily the “flip process.” More
precisely, we shall consider Eq. (1.3) in the form

i∂tψt (x) = H0ψt (x) + u(x)ψt (x) + λVx (ω(t))ψt (x) (2.1)

Here u is the real-valued, p-periodic potential as in (1.5) for some p ∈ Z
d
>0; H0 is a

self-adjoint, short-ranged, translation invariant hopping operator with non-zero hopping
along a set of vectors that generate Z

d ; Vx (ω(t)) is a time-dependent random potential
that fluctuates according to a stationary Markov process ω(t); and λ ≥ 0 is a coupling
constant used to set the strength of the disorder. These assumptions will be made precise
below. Some assumptions are similar to those in [17,25]. They are repeated here for con-
venience. In particular, our assumptions on the probability space and Markov dynamics
remain largely unchanged.

2.1. Assumptions.

Assumption 2.1 (Probability space). Throughout, let (�,μ) be a probability space, on
which the additive group Z

d acts through a collection of μ-measure preserving maps.
That is, for each x ∈ Z

d there is a μ-measure preserving map, τx : � → �, where τ0 is
the identity map and τx ◦ τy = τx+y for each x, y ∈ Z

d . We refer to the maps τx , x ∈ Z
d

as “disorder translations.”

Assumption 2.2 (Markov dynamics). The space � is a compact Hausdorff space, μ is
a Borel measure and for each α ∈ � there is a probability measure Pα on the σ -algebra
generated by Borel-cylinder subsets of the path space P(�) = �[0,∞). Furthermore,
the collection of these measures has the following properties

(1) Right continuity of paths For each α ∈ �, with Pα probability one, every path
t �→ ω(t) is right continuous and has initial value ω(0) = α.

(2) Shift invariance in distribution For each α ∈ � and x ∈ Z
d , Pτxα = Pα ◦ S−1

x ,
where Sx ({ω(t)}t≥0) = {τxω(t)}t≥0 is the shift τx lifted to path space P(�).

(3) Stationary Markov property There is a filtration {Ft }t≥0 on the Borel σ -algebra of
P(�) such that ω(t) is Ft measurable and

Pα

({ω(t + s)}t≥0 ∈ E
∣∣Fs
) = Pω(s)(E)

for any measurable E ⊂ P(�) and any s > 0.
(4) Invariance of μ For any Borel measurable E ⊂ � and each t > 0,

∫

�

Pα(ω(t) ∈ E) μ(dα) = μ(E).
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We useEα(·) to denote averaging with respect to Pα andE (·) to denote the combined
average

∫
�

Eα(·) μ(dα) over theMarkov paths and the initial value of the process. Invari-
ance of μ under the dynamics is equivalent to the identity E ( f (ω(t))) = E ( f (ω(0)))
for f ∈ L1(�). An important tool for studying Markov processes is conditioning on
the value of a process at a given time. The proper definition can be found in, e.g.
[25]. Conditioning on the value of the processes at t = 0 determines the initial value:
E (·|ω(0) = α) = Eα(·). To the process {ω(t)}t≥0, there is associated a Markov semi-
group, obtained by averaging over the initial value conditioned on the value of the process
at later times:

St f (α) := E ( f (ω(0))|ω(t) = α) .

As is well known, St is a strongly continuous contraction semi-group on L p(�) for
1 ≤ p < ∞. The semigroup St has a generator

B f := lim
t↓0

1

t
( f − St f ) , (2.2)

defined on the domain D(B) where the right hand side exists in the L2-norm.1 By
the Lumer–Phillips theorem, B is a maximally accretive operator. Note that St1 = 1
by definition, where 1(α) = 1 for all α ∈ �. The invariance of μ under the process
{ω(t)}t≥0 implies further that S†t 1 = 1. It follows that

L2
0(�) :=

{
f ∈ L2(�)

∣∣∣∣
∫

�

f (α)μ(dα) = 0

}

is invariant under the semi-group St and its adjoint S†t . We assume that B is sectorial
and strictly dissipative on L2

0(�).

Assumption 2.3 (Sectoriality of B). There are b, γ ≥ 0 such that

|Im 〈 f, B f 〉| ≤ γRe 〈 f, B f 〉 + b ‖ f ‖2 (2.3)

for all f ∈ D(B). Here 〈 f, g〉 = ∫ f gdμ denotes the inner product on L2(�).

Assumption 2.4 (Gap condition for B). There is T > 0 such that

Re 〈 f, B f 〉 ≥ 1

T

∥∥∥∥ f −
∫

�

f dμ

∥∥∥∥
2

L2(�)

(2.4)

for all f ∈ D(B).

Remark 2.5. (1) Given the generator B we formally write the semigroup St as e−t B . (2)
The resolvent of the semigroup e−t B is the operator valued analytic function R(z) :=
(B − z)−1 = ∫∞

0 et ze−t Bdt, which is defined and satisfies ‖R(z)‖ ≤ 1
|Rez| when

Rez < 0. Sectoriality is equivalent to the existence of a analytic continuation of R(z)
to z ∈ C \ Kb,γ with the bound ‖R(z)‖ ≤ dist−1(z, Kb,γ ) where Kb,γ is the sector
{Rez ≥ 0} ∩ {|Imz| ≤ b + γ |Rez|} (see [18, Theorem V.3.2]). In particular Assumption
2.3 holds (with b = 0 and γ = 0) if the Markov dynamics is reversible, in which case
B is self-adjoint. (3) The gap assumption implies that the restriction of B to L2

0(�) is

strictly accretive, and thus that
∥∥∥ St |L2

0(�)

∥∥∥ ≤ e− t
T .

1 Note Eq. (2.2) defines a generator with positive real part; while, it is common in probability theory to
define a generator with negative real part.
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Assumption 2.6 (Translation covariance, boundedness and non-degeneracy of the
potential). The potentials Vx (ω) appearing in the Schrödinger equation (2.1) are given
by Vx (ω) = v(τxω)where v ∈ L∞(�).We assume that ‖v‖∞ = 1,

∫
�

v(ω)μ(dω) = 0,
and v is non-degenerate in the sense that there is χ > 0 such that

∥∥∥B−1(v(τx ·) − v(τy ·))
∥∥∥
L2(�)

≥ χ (2.5)

for all x, y ∈ Z
d , x �= y.

Remark 2.7. Since the Markov process is translation invariant, B commutes with the
translations Tx f (α) = f (τxα) of L2(�). Thus (2.5) is equivalent to

∥∥∥B−1(v(τx ·) − v(·))
∥∥∥
L2(�)

≥ χ. (2.6)

for all x ∈ Z
d , x �= 0. The non-degeneracy essentially amounts to requiring that

B−1(vτx ) are uniformly non-parallel to B−1(v) for x �= 0. In particular, the condition is
trivially satisfied if for example if the processes v(τxω(t)) and v(ω(t)) are independent
for x �= 0, as in the “flip process”.

Assumption 2.8 (Translation invariance and non-degeneracy of the hopping terms).
The hopping operator, H0, on �2(Zd) is defined by

H0ψ(x) =
∑

ξ �=x

h(x − ξ)ψ(ξ). (2.7)

Additionally, the hopping kernel h : Z
d \ {0} → C is

(1) Self-adjoint:

h(−ξ) = h(ξ);
(2) Short range:

∑

ξ∈Zd\{0}
|ξ |2|h(ξ)| < ∞; (2.8)

(3) Non-degenerate:

spanZ (supph) = Z
d , (2.9)

where supph = {ξ ∈ Z
d : h(ξ) �= 0

}
.

Remark 2.9. (1) It follows from (1) and (2) that ĥ(k) = ∑x e
−ik·xh(x) is a real-valued

C2 function on the torus [0, 2π)d . In particular, H0 is a bounded self-adjoint operator
with ‖H0‖�2(Zd )→�2(Zd ) = maxk |̂h(k)| and

‖ĥ‖∞, ‖ĥ′‖∞, ‖ĥ′′‖∞ ≤
∑

ξ∈Zd\{0}
(1 + |ξ |2)|h(ξ)| < ∞. (2.10)

(2) It is natural to assume that supp h can generate the entire Z
d lattice, otherwise the

system can always be reduced a direct sum of systems over several sub-lattices.
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Below we will need the following simple consequence of the non-degeneracy of h:

Proposition 2.10. For each non-zero k ∈ R
d ,

∑

ξ∈Zd

|k · ξ |2|h(ξ)|2 > 0. (2.11)

Proof. Suppose on the contrary that
∑

ξ∈Zd |k · ξ |2|h(ξ)|2 = 0 for some k �= 0. It
follows that k · ξ = 0 for all ξ ∈ supp h, violating the non-degeneracy of h.

2.2. General result. The main result is the following

Theorem 2.11 (Central limit theorem). For any periodic potential u and λ > 0, there
is a positive definite d × d matrix D = D(λ, u) such that for any bounded continuous
function f : R

d → R and any normalized ψ0 ∈ �2(Zd) we have

lim
t→∞

∑

x∈Zd

f

(
x√
t

)
E

(
|ψt (x)|2

)
=
∫

Rd
f (r)

(
1

2π

) d
2

e− 1
2

〈
r, D−1r

〉
dr, (2.12)

whereψt (x) is the solution to Eq. (2.1). If furthermore
∑

x (1+ |x |2) |ψ0(x)|2 < ∞, then
diffusive scaling Eq. (1.7) holds with the diffusion constant

D(λ) = lim
t→∞

1

t

∑

x∈Zd

|x |2 E

(
|ψt (x)|2

)
= tr D(λ). (2.13)

Moreover, Eq. (2.12) extends to quadratically bounded continuous f with supx (1 +
|x |2)−1 | f (x)| < ∞.

Assume further that

lim
T→∞

2

T 3

∫ ∞

0
e− 2t

T
∑

x∈Zd

x2j

∣∣∣
〈
δx , e−it (H0+U )δ0

〉∣∣∣
2
dt > 0, j = 1 . . . , d, (2.14)

then there is a positive definite d × d matrix D0 such that

D(λ) = 1

λ2

(
D0 + o(1)

)
and D(λ) = tr D(λ) = 1

λ2

(
tr D0 + o(1)

)
as λ → 0.

(2.15)

Remark 2.12. (1) In the case with the short range hopping H0 and periodicU , the strong
limit of all the j-th velocity operators limt t−1 X j (ψt ) always exist, which implies the
existence of the limit in (2.14). We say H0 +U has ballistic motion if the limit in (2.14)
is positive. (2) δ0 in (2.14) can be replaced by any ψ0 with compact support. (3) There
always exists a semi-positive definite d × d matrix D0 such that (2.15) holds regardless
of (2.14). If (2.14) is true for j ∈ S with S ⊂ {1, 2, . . . , d}, then the restriction of D0

on S × S is positive definite, and we still have D(λ) ∼ λ−2 since tr D0 > 0.
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3. Augmented Space Analysis

3.1. TheMarkov semigroup on augmented spaces and the Pillet–Feynman–Kac formula.
As in the works [17,25], our analysis of the Schrödinger equation Eq. (2.1) is based on
a formula of Pillet [23] for E(ρt ), where ρt (x, y) = ψt (x)ψt (y) is the density matrix
corresponding to a solution ψt to Eq. (2.1). Pillet’s formula relates E(ρt ) to matrix
elements of a contraction semi-group on the “augmented space”

H := L2(�;HS(Zd)), (3.1)

where HS(Zd) denotes the Hilbert-Schmidt ideal in the bounded operators on �2(Zd).
The term “augmented space” refers to a space of functions obtained by “augmenting”

functions defined on X = Z
d or X = Z

d × Z
d by allowing dependence on the disorder

ω ∈ �. More specifically, it refers to spaces of the form

Definition 3.1 (Definition 3.1 of [25]). Let (B(X), ‖ · ‖B(X)) be a Banach space of
functions on X whose norm satisfies

(1) If g ∈ B(X) and 0 ≤ | f (x)| ≤ |g(x)| for every x ∈ X , then f ∈ B(X) and
‖ f ‖B(X) ≤ ‖g‖B(X).

(2) For every x ∈ X , the evaluation x �→ f (x) is a continuous linear functional onB(X).

For p ≥ 1, the augmented space B p(X × �) is the set of maps F : X × � → C such
that x → ‖F(x, ·)‖L p(�) ∈ B(X).

A general theory of such spaces is developed in [25]. In particular, it is shown there
that B p(X × �) is a Banach space under the norm

‖F‖Bp(X×�) :=
∥∥∥∥∥

(∫

�

|F(x, ω)|p μ(dω)

) 1
p

∥∥∥∥∥B(X)

,

with‖F‖Bp(X×�) ≤ (∫
�

‖F(·, ω)‖p μ(dx)
) 1
p [25, Prop. 3.1]. It follows that L p(�;B) ⊂

B p(X × �), although in general equality may not hold. For B(X) = �p(X) and
1 ≤ q ≤ ∞, we denote Bq(X) by �p;q(X). Then, for 1 ≤ p < ∞,

�p;p(X × �) = L p(�; �p(X)) = L p(X × �),

where we take the product measure Counting Measure× μ on X × � [25, Prop 3.2]. In
particular, �2;2(X × �) is a Hilbert space with inner product

〈F, G〉 =
∑

x∈X

∫

�

F(x, ω)G(x, ω)μ(dω).

Another space that will play an important role below is �∞;1(X ×�) which is the space
of maps with

‖F‖�∞;1 := sup
x∈X

∫

�

|F(x, ω)| μ(dω) < ∞.

Returning now to H = L2(�;HS(Zd)), we note that we may think of an element
F ∈ H as a C-valued map on

M := Z
d × Z

d × �, (3.2)
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via the identification

F(x, y, ω) := 〈δx , F(ω)δy〉. (3.3)

It follows from [25, Prop. 3.2] that

H = �2;2(Zd × Z
d × �) = L2(M),

provided M is given the product measure m = (counting measure on Z
d × Z

d
)× μ.

We define operators K, U and V that lift the commutators with H0, U and Vω toH:

KF(ω) := [H0, F(ω)] , UF(ω) := [U, F(ω)] ,

and VF(ω) := [Vω, F(ω)] . (3.4)

The following proposition follows immediately from Eq. (3.4).

Proposition 3.2. The operators K, U and V are self-adjoint, bounded and are given by
the following explicit expressions

KF(x, y, ω) =
∑

ξ �=0

h(ξ) [F(x − ξ, y, ω) − F(x, y − ξ, ω)] , (3.5)

UF(x, y, ω) = [u(x) − u(y)] F(x, y, ω) (3.6)

and

VF(x, y, ω) = [v(τxω) − v(τyω)
]
F(x, y, ω), (3.7)

for any F ∈ L2(M).

The final ingredient for Pillet’s formula is the lift of the Markov generator B to
L2(M). Throughout, we will use e−t B to denote the Markov semigroup lifted to the
augmented space B p(X × �), with B the corresponding generator. This semigroup is
defined by

e−t B F(x, α) := E� (F(x, ω(0)) | ω(t) = α) . (3.8)

In particular, given φ ∈ B(X) and f ∈ L p(�) we have

e−t B(φ ⊗ f ) = φ ⊗ e−t B f,

where φ ⊗ f denotes the function

(φ ⊗ f )(x, ω) := φ(x) f (ω).

Proposition 3.3 (Prop. 3.3 of [25]). The semigroup e−t B is contractive and positivity
preserving on B p(X × �) and B is sectorial on L2(X × �), with the same constants b
and γ as appear in Assumption 2.3.

Pillet’s formula expresses the average of the time dependent dynamics (1.6) in terms
of the semi-group on L2(M) generated by L = iK + iU + iλV + B.
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Lemma 3.4 (Pillet’s formula [23]). Let

L := iK + iU + iλV + B (3.9)

on the domain D(B) ⊂ L2(M). Then L is maximally accretive and sectorial and if
ρt = ψt 〈ψt , ·〉 is the density matrix corresponding to a solution ψt to Eq. (2.1) with
ψ0 ∈ �2(Zd), then

E (ρt |ω(t) = α) = [e−tL (ρ0 ⊗ 1)](α), (3.10)

where 1(α) = 1 for all α. Consequently, we have

E (ρt ) =
∫

�

[
e−tL (ρ0 × 1)

]
(ω)μ(dω). (3.11)

Furthermore, for a solution ψt to Eq. (2.1), we have

E

(
ψt (x)ψt (y)

)
=
〈
δx ⊗ δy ⊗ 1, e−tL (ψ0 ⊗ ψ0 ⊗ 1

)〉

L2(M)
. (3.12)

In particular, we have

E (ρt (x, x)) =
〈
δx ⊗ δx ⊗ 1, e−tLρ0 ⊗ 1

〉

H . (3.13)

Remark 3.5. Here and belowwewill use tensor product notation for elements of �2(Zd×
Z
d),

[φ ⊗ ψ](x, y) = φ(x)ψ(y).

Thus a rank one operator ψ 〈φ, ·〉 ∈ HS(Zd) corresponds to ψ ⊗ φ.

For the derivation of this result, we refer the reader to [25, Lemmas. 3.5 and 3.6].
In [25], the term U is different, stemming as it does there from the background static
random potential. However, an essentially identical proof works in the present context.

3.2. Vector valued Fourier analysis. For each ξ ∈ Z
d , we define the (simultaneous

position and disorder) shift operator

Sξ�(x, y, ω) := �(x − ξ, y − ξ, τξω) (3.14)

for any function � defined on Z
d × Z

d × �.

Proposition 3.6. The map ξ �→ Sξ is a unitary representation of the additive group Z
d

on the Hilbert space H, and for every ξ ∈ Z
d

[
Sξ ,K

] = [Sξ ,V
] = [Sξ , B

] = 0.

The potential term U only commutes with a subgroup of translations Sξ , correspond-
ing to translation over a period of the potential. For ξ ∈ Z

d let

p ◦ ξ := (p1ξ1, . . . , pdξd) (3.15)

and
pZ

d = {p ◦ ξ : ξ ∈ Z
d}. (3.16)

Then
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Proposition 3.7. For every ξ ∈ Z
d ,
[
Sp◦ξ ,U

] = 0.

Because of Propositions 3.6, 3.7, a suitable Floquet transformwill give a fibre decom-
position of the various operators K, U , V and B. Let T

d = [0, 2π)d denote the torus,

M̂ := Z
d × �,

and letZp = Zp1 ×· · ·×Zpd denote the fundamental cell of the periodicity group onZ
d .

Note that �2(Zp) ∼= C
⊗p := C

p1 ⊗· · ·⊗C
pd . Using this identification, let πσ : C

⊗p →
C be the coordinate evaluation map associated to a point σ = (σ1, . . . , σd) ∈ Zp. For
f, g ∈ L2(M̂; C

⊗p), we use the natural inner product on L2(M̂; C
⊗p)

〈 f, g〉L2(M̂;C⊗p) =
∑

σ∈Zp

〈πσ f, πσ g〉L2(M̂;C) . (3.17)

Given� ∈ L2(M) and k ∈ T
d , the Floquet transform of � ∈ L2(M) at k is defined

to be a map �̂k : M̂ → C
⊗p as follows:

πσ �̂k(x, ω) :=
∑

ξ∈Zd

e−i k·(p◦ξ+σ) Sp◦ξ+σ �(x, 0, ω)

=
∑

n∈pZd+σ

e−i k·n �(x − n,−n, τnω), (3.18)

for each σ ∈ Zp. Initially we define this Floquet transform on the augmented space

W1(M) :=
{
F : M → C

∣∣∣∣∣ supx

∑

y

∫
|F(x + y, y, ω)|μ(dω) < ∞

}
. (3.19)

The basic results of Fourier analysis are naturally extended to this Floquet transform. In
particular, if F ∈ W1(M), then F̂k ∈ �∞;1(M̂) for each k and k �→ F̂k is continuous.
Furthermore, Plancherel’s Theorem,

‖F‖2L2(M)
=
∫

Td
‖F̂k‖2

L2(M̂)
ν(dk),

holds for F ∈ W1(M)
⋂

L2(M), where ν denotes normalized Lebesgue measure on
the torus T

d . Thus, the Floquet transform extends naturally to L2(M). Throughout the
rest of the paper, we assume that the Floquet transform is properly defined on L2(M).
For more details of this extension in a similar context, we refer readers to Section 3 in
[25].

One may easily compute

πσ (̂K�)k(x, ω) =
∑

ξ �=0

h(ξ)
[
πσ �̂k(x − ξ, ω) − e−ik·ξπσ−ξ �̂k(x − ξ, τξω)

]
;

πσ (̂U�)k(x, ω) = (u(x − σ) − u(−σ)) πσ �̂k(x, ω);
πσ (̂V�)k(x, ω) = (v(τxω) − v(ω)) πσ �̂k(x, ω);
πσ (̂B�)k(x, ω) = B πσ �̂k(x, ω),
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where on the right hand side, B acts onπσ �̂k as inEq. (3.8).With the above computations
in mind, let K̂k, Û , and V̂ denote the following operators on functions φ : M̂ → C

⊗p:

πσ (K̂k φ) (x, ω) =
∑

ξ �=0

h(ξ)
[
πσ φ(x − ξ, ω) − e−ik·ξπσ−ξφ(x − ξ, τξω)

]
; (3.20)

πσ (Û φ)(x, ω) = (u(x − σ) − u(−σ)) πσ φ(x, ω); (3.21)

and

(V̂φ)(x, ω) = (v(τxω) − v(ω)) φ(x, ω). (3.22)

We now present three lemmas (Lemmas 3.8–3.12), which describe the basic proper-
ties of the operators K̂k, Û , and V̂ . These results are the adaptation to the present context
of Lemmas 3.13–3.15 of [25], with the main difference being that here we consider the
vector valued space L2(M̂; C

⊗p) instead of L2(M̂; C). We omit the details of the proofs
here.

Lemma 3.8. Let M̂ = Z
d × �, K̂k, Û and V̂ be given as above, then

(1) K̂k, Û and V̂ are bounded on �∞;1(M̂; C
⊗p).

(2) K̂k, Û and V̂ are bounded and self-adjoint on L2(M̂; C
⊗p) with the following

bounds:
∥∥K̂k

∥∥
L2(M̂;C⊗p)

≤ 2‖ĥ‖∞,
∥∥Û
∥∥
L2(M̂;C⊗p)

≤ 2‖u‖∞,
∥∥V̂
∥∥
L2(M̂;C⊗p)

≤ 2

(3) If � ∈ L2(M; C) and let �̂k be given as in (3.18), then

(̂K�)k = K̂k�̂k, (̂U�)k = Û �̂k and (̂V�)k = V̂ �̂k

for ν-almost every k ∈ T
d .

Because the Markov process has a distribution invariant under the shifts, the Markov
semigroup commutes with Floquet transform:

Lemma 3.9 (Lemma 3.14, [25]). Let the Markov semigroup e−t B be defined as in
Eq. (3.8). Then,

̂
[
e−t B�

]
k = e−t B�̂k

for � ∈ L2(M) and ν-almost every k ∈ T
d .

Lemma 3.10. Let K̂k be given as in (3.20) with h that satisfies (2.8). Then the map
k �→ K̂k is C2 on T

d , considered either as a map into the bounded operators on
�∞;1(M̂; C

⊗p) or as a map into the bounded operators on L2(M̂; C
⊗p).

Moreover, we have the explicit expression for the derivatives for any φ(x, ω) ∈
L2(M̂; C

⊗p) , k ∈ T
d and 1 ≤ i, j ≤ d:

πσ ∂k j K̂kφ(x, ω) = i
∑

ξ �=0

ξ j h(ξ) e−ik·ξπσ−ξφ(x − ξ, τξω), (3.23)

πσ ∂ki ∂k j K̂kφ(x, ω) =
∑

ξ �=0

ξi ξ j h(ξ) e−ik·ξπσ−ξ φ(x − ξ, τξω). (3.24)



1612 J. Schenker, F. Z. Tilocco, S. Zhang

with bounds
∥∥∂k j K̂k

∥∥ ≤ ‖ĥ′‖∞,
∥∥∂ki ∂k j K̂k

∥∥ ≤ ‖ĥ′′‖∞, (3.25)

where ‖ĥ′‖∞, ‖ĥ′′‖∞ are bounded in (2.10).
In particular, let

−→
1 ∈ C

⊗p be the vector with πσ
−→
1 = 1 for all σ ∈ Zp. Then

∂k j K̂0 δ0 ⊗ −→
1 ⊗ 1 = i

∑

ξ �=0

ξ j h(ξ) δξ ⊗ −→
1 ⊗ 1, (3.26)

∂ki ∂k j K̂0 δ0 ⊗ −→
1 ⊗ 1 =

∑

ξ �=0

ξi ξ j h(ξ) δξ ⊗ −→
1 ⊗ 1. (3.27)

Remark 3.11. Throughout the rest of the paper, we will frequently use the notation−→
1 q ∈ C

q for any q ∈ Z>0 to indicate the constant vector in C
q with all entries 1 and

write
−→
1 = −→

1 ⊗p for simplicity.

Putting these results together we obtain

Lemma 3.12. For each k ∈ T
d , let

L̂k := i K̂k + iÛ + iλV̂ + B (3.28)

on the domain D(B) ⊂ L2(M̂; C
⊗p). Then L̂k is maximally accretive on L2(M̂; C

⊗p).
Furthermore

(1) For t > 0, k �→ e−tL̂k is
(a) a C2 map from T

d into the contractions on L2(M̂; C
⊗p); and

(b) a C2 map from T
d into the bounded operators on �∞;1(M̂; C

⊗p).
(2) The operators {L̂k}k∈Td are uniformly sectorial; that is for every k ∈ T

d and every
f ∈ L2(M̂; C

⊗p)

∣∣Im
〈
f, L̂k f

〉∣∣ ≤ γRe
〈
f, L̂k f

〉
+ b′ ‖ f ‖2L2 (3.29)

where γ, b are given as in (2.3) and b′ = 2b + 2‖ĥ‖∞ + 2 ‖u‖∞ + 2λ.

(3) If � ∈ W1(M), then

e−tL̂k�̂k := ̂
[
e−tL�

]
k (3.30)

for every k ∈ T
d . For � ∈ L2(M), Eq. (3.30) holds for ν-almost every k.

Combining (3.30)with Pillet’s formula (Lemma3.4), we obtain the following Floquet
transformed Pillet formula in vector form:

Lemma 3.13 (Floquet transformed Pillet formula). Let ψ0 ∈ �2(Zd) and define
ρ̂0;k(x) ∈ C

⊗p for x ∈ Z
d , k ∈ T

d as

πσ ρ̂0;k(x) :=
∑

n∈pZd+σ

e−ik·nψ0(x − n)ψ0(−n), σ ∈ Zp. (3.31)

Then
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∑

y∈Zd

e−ik·y
E

(
ψt (x − y)ψt (−y)

)

=
〈
δx ⊗ −→

1 ⊗ 1, e−tL̂k
(
ρ̂0;k ⊗ 1

)〉

L2(M̂;C⊗p)
, (3.32)

where ψt is the solution to Eq. (2.1) with initial condition ψ0. Here e−tL̂k(ρ̂0;k ⊗ 1) ∈
�∞;1(M̂; C

⊗p) for each k and is in L2(M̂; C
⊗p) for ν-almost every k.

In particular, for every k ∈ T
d ,

∑

x∈Zd

eik·x
E

(
|ψt (x)|2

)
=
〈
δ0 ⊗ −→

1 ⊗ 1, e−tL̂k
(
ρ̂0;k ⊗ 1

)〉

L2(M̂;C⊗p)
. (3.33)

Proof. Let�(x, y, ω)=(e−tL(ρ0⊗1)
)
(x, y, ω)= 〈δx⊗δy, e−tL(ρ0⊗1(ω))

〉
L2(Zd×Zd )

.
Pillet’s formula (3.12) can be rewritten as

E (�(x, y, ·)) =
∫

�

(
e−tL(ρ0 ⊗ 1)

)
(x, y, ω)μ(dω)

=
〈
δx ⊗ δy ⊗ 1, e−tL(ρ0 ⊗ 1)

〉

L2(Zd×Zd×�)
= E

(
ψt (x)ψt (y)

)
.

We note that ρ0 ⊗ 1 ∈ W1(M) and that e−tL is a bounded operator on W1(M) (see
[25, Lemma 3.9]). Thus � ∈ W1(M) and its Floquet transform

πσ �̂k(x, ω) =
∑

n∈pZd+σ

e−i k·n �(x − n,−n, τnω).

is continuous in k. Direct computation shows that
∫

Td
eik·y πσ �̂k(x, ω) ν(dk) = �(x − y,−y, τyω)δpZ+σ (y).

Thus, by the Fourier-inversion formula,
∑

y∈pZd+σ

e−ik·y�(x − y,−y, τyω) = πσ �̂k(x, ω),

and
∑

y∈pZd+σ

e−ik·y
E (�(x − y,−y, ·)) = πσ E

(
�̂k(x, ·)) = 〈δx ⊗ 1, πσ �̂k

〉
L2(M̂;C)

for every k ∈ T
d .

On the other hand, by (3.30), for � = ρ0 ⊗ 1, we have

�̂k = ̂(e−tL�)k = e−tL̂k �̂k,

where

πσ �̂k = πσ
̂(ρ0 ⊗ 1)k(x, ω) =

∑

n∈pZd+σ

e−i k·n ψ0(x − n)ψ0(−n) ⊗ 1.
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Clearly, �̂k = ρ̂0;k ⊗ 1, by the definition (3.31) of ρ̂0;k. Putting everything together,
we have

∑

y∈pZd+σ

e−ik·y
E

(
ψt (x − y)ψt (−y)

)
=
〈
δx ⊗ 1, πσ e−tL̂k ρ̂0;k ⊗ 1

〉

L2(M̂;C)
.

Finally, summing over σ in the periodicity cell Zp, we find that
∑

y∈Zd

e−ik·y
E

(
ψt (x − y)ψt (−y)

)
=
〈
δx ⊗ −→

1 ⊗ 1, e−tL̂k ρ̂0;k ⊗ 1
〉

L2(M̂;C⊗p)
.

4. Spectral Analysis on the Augmented Space

4.1. Spectral analysis of K̂0. The spectral analysis of L̂k plays an important role in
studying the diffusive scaling of this model. We begin by showing that 0 is an eigenvalue
of K̂0. This observation allows us to write down a block decomposition and to find a
spectral gap for L̂0 in the two sections that follow.

The key observation regarding K̂0 is the following:

Lemma 4.1. Let x ∈ Z
d and −→w ∈ C

⊗p. Then

K̂0 δx ⊗ −→w ⊗ 1 =
∑

ξ �=0

h(ξ) δx−ξ ⊗ (I − A−ξ
p )−→w ⊗ 1, (4.1)

where Aξ
p =⊗d

j=1(Apj )
ξ j with Ap the p × p right shift matrix,

Ap :=

⎛

⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞

⎟⎟⎟⎟⎠
. (4.2)

Proof. This follows from direct computation:

πσ K̂0(δx ⊗ −→w ⊗ 1) =
∑

ξ �=0

h(ξ)[πσ δx−ξ ⊗ −→w ⊗ 1 − πσ−ξ δx−ξ ⊗ −→w ⊗ 1]

=
∑

ξ �=0

h(ξ)δx−ξ ⊗ [πσ − πσ−ξ ]−→w ⊗ 1

=
∑

ξ �=0

h(ξ) δx−ξ ⊗ πσ (I − A−ξ
p )−→w ⊗ 1.

To proceed we need to consider the matricesAξ
p. We begin with Ap, the p × p right

shift.

Lemma 4.2. Let m ∈ Z, p ∈ Z>0. The matrix Am
p = (Ap)

m has p
gcd(m,p) distinct

eigenvalues,

e2π i
�m
p , � = 0, 1, . . . ,

p

gcd(m, p)
− 1, (4.3)

each of multiplicity gcd(m, p).
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Proof. Since Ap
p = 1, it suffices to restrict our attention to 0 < m < p. The eigenvalues

of Ap are all p-th roots of unity

λ� = e2π i
�
p , � = 0, 1, . . . , p − 1,

and each eigenvalue has multiplicity one. The corresponding eigenvectors are the ele-
ments of the discrete Fourier basis. For 1 < m < p, it follows from the spectral mapping
theorem that Am

p has eigenvalues λm� for � = 0, 1, . . . , p − 1. From here, it is easy to
verify that λm� = λm

�′ whenever |� − �′| = np
gcd(m,p) for some integer n. Finally, since

|� − �′| < p, it follows that there are p
gcd(m,p) distinct eigenvalues each of multiplicity

gcd(m, p).

This result has an immediate extension to Ap, the tensor product of right shift oper-
ators.

Corollary 4.3. If p = (p1, . . . , pd) ∈ Z
d
>0 and m = (m1, . . .md) ∈ Z

d , then Am
p :=

⊗d
j=1 A

m j
p j has eigenvalues

d∏

j=1

e
2π i

� j m j
p j ; � j = 0, 1, . . . ,

p j

gcd(m j , p j )
− 1. (4.4)

In particular, if (e j )
d
j=1 is the standard basis on Z

d , then

Ker(I − Ae j
p ) = C

p1 ⊗ · · · ⊗ {−→1 p j } ⊗ · · · ⊗ C
pd . (4.5)

Note that, by Eq. (4.5),

d⋂

j=1

Ker(I − Ae j
p ) = span{−→1 }.

The following lemma extends this result to a collection Am j
p , j = 1, . . . , k, where the

vectors m1, . . . , mk generate Z
d .

Lemma 4.4. Let m1, . . . , mk ∈ Z
d , n1, . . . , nk ∈ Z, and M = n1m1 + · · · + nkmk for

some k ≥ 1. Then, we have

k⋂

j=1

Ker(I − Am j
p ) ⊂ Ker(I − AM

p ). (4.6)

In particular, if m1, . . . , mk generate Z
d , then

k⋂

j=1

Ker(I − Am j
p ) =

d⋂

j=1

Ker(I − Ae j
p ) = span{−→1 }. (4.7)
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Proof. Suppose w ∈⋂k
j=1 Ker(I − Am j

p ), then for each j = 1, 2, . . . , k,

w = Am j
p w =

(
Am j

p

)n j
w = An jm j

p w. (4.8)

Repeated application of (4.8) yields

w = An1m1
p = Ankmk

p w = AM
p w.

Thus, w ∈ Ker(I − AM
p ).

If m1, . . . , mk generate Z
d , then (4.6) implies the first equality in (4.7). The second

equality follows from Corollary 4.3 since

d⋂

j=1

Ker(I − Ae j
p ) =

d⋂

j=1

(
C

p1 ⊗ · · · ⊗ −→
1 p j ⊗ · · · ⊗ C

pd
)

= span{−→1 }.

We return now to consideration of K̂0. The non-degenerate support condition (2.9)
guarantees that the hopping kernel, h, is non-zero on a spanning set, {ξ j } j∈J , of Z

d .

Combining this fact with Lemma 4.4, we can see that (I − A−ξ
p )−→w = 0 for all ξ with

h(ξ) �= 0 if and only if −→w ‖ −→
1 . In particular, Lemma 4.1 leads to the following

Corollary 4.5. Let x ∈ Z
d and −→w ∈ C

⊗p. Then K̂0(δx ⊗ −→w ⊗ 1) = 0 if and only if
−→w ‖ −→

1 . Moreover, there is c0 > 0 such that for −→w ⊥ −→
1 ,

∥∥K̂0(δx ⊗ −→w ⊗ 1)
∥∥2 ≥ c0

∥∥−→w ∥∥2 . (4.9)

Proof. By Lemma 4.1, we have

∥∥K̂0(δx ⊗ −→w ⊗ 1)
∥∥2 =

∑

ξ

|h(ξ)|2
∥∥∥(I − A−ξ

p )−→w
∥∥∥
2
.

The right hand side is a quadratic form Q(w) on the finite dimensional space C
⊗p.

Furthermore, by Lemma 4.1, Q(w) vanishes only if w ‖ −→
1 . The lower bound (4.9)

follows. In fact, by Lemma 4.2 the smallest eigenvalue of Q(w) on {−→1 }⊥ is

c0 = min
�∈Zp\0

∑

ξ

|h(ξ)|2
∣∣∣∣∣∣
1 − exp

⎛

⎝−2π i
d∑

j=1

� jξ j

p j

⎞

⎠

∣∣∣∣∣∣

2

.

Thus c0 �= 0 and Eq. (4.9) holds.

4.2. Block decomposition of L̂0. In the previous section, we showed that δ0 ⊗ −→
1 ⊗ 1

is an eigenvector of K̂0 corresponding to the eigenvalue 0. Using (3.21) and (3.22), it
is easy to check that this claim also holds for Û and V̂ . Finally, the Markov generator
satisfies B1 = B†1 = 0. Therefore,

L̂0 δ0 ⊗ −→
1 ⊗ 1 = L̂†

0 δ0 ⊗ −→
1 ⊗ 1 = 0. (4.10)
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To further analyze the spectrum of L̂k we will use a block decomposition associated
to the following direct sum decomposition of L2(M̂; C

⊗p) ∼= �2(Zd)⊗C
⊗p ⊗ L2(�):

�2(Zd) ⊗ C
⊗p ⊗ L2(�) = Ĥ0 ⊕ Ĥ1 ⊕ Ĥ2 ⊕ Ĥ3, (4.11)

where

Ĥ0 := span{δ0 ⊗ −→
1 ⊗ 1},

Ĥ1 := δ0 ⊗ {−→1 }⊥ ⊗ 1,

Ĥ2 := {δ0}⊥ ⊗ C
⊗p ⊗ 1 = �2(Zd\{0}) ⊗ C

⊗p ⊗ 1,

and

Ĥ3 := (
Ĥ0 ⊕ Ĥ1 ⊕ Ĥ2

)⊥ =
{
�(x, ω) :

∫

�

�(x, ω)dμ(ω) = 0

}
.

Note that dim Ĥ0 = 1, dim Ĥ1 = p1 . . . pd − 1, and dim Ĥ2 = dim Ĥ3 = ∞.
Wewill write operators on L2(M̂; C

⊗p) as 4×4matrices of operators acting between
the various spaces Ĥ j , j = 0, 1, 2, 3. Throughout we will use the notation:

(1) Pj = the orthogonal projection onto Ĥ j ,
(2) P⊥

j = 1 − Pj .

In particular, P = P⊥
3 = P0 + P1 + P2 is the orthogonal projection of L2(M̂; C

⊗p) onto
the space Ĥ0 ⊕ Ĥ1 ⊕ Ĥ2 = �2(Zd) ⊗ C

⊗p ⊗ 1 of “non-random” functions:

P�(x) =
∫

�

�(x, ω)dμ(ω).

Then P3 = P⊥ = 1 − P is the projection onto the space of mean zero functions Ĥ3.

Lemma 4.6. On Ĥ0 ⊕ Ĥ1 ⊕ Ĥ2 ⊕ Ĥ3 the operators K̂0, Û , V̂ , and B have following
block decomposition

K̂0 =

⎛

⎜⎜⎝

0 0 0 0
0 0 P1K̂0P2 0
0 P2K̂0P1 P2K̂0P2 0
0 0 0 P3K̂0P3

⎞

⎟⎟⎠ , Û =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 P2Û P2 0
0 0 0 P3Û P3

⎞

⎟⎟⎠ ,

V̂ =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 P2V̂P3
0 0 P3V̂P2 P3V̂P3

⎞

⎟⎟⎠ , and B =
⎛

⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 P3BP3

⎞

⎟⎠ .

Proof. The eigenvalue equation (4.10) gives

P0 T = T P0 = 0

for T = K̂0, Û , V̂, B, L̂0. From the definition (3.20) of K̂0 we see that this operator is
“off-diagonal” with respect to position, in the sense that

〈
δx ⊗ F, K̂0δx ⊗ G

〉 = 0 for
any x and any F,G ∈ L2(�; C

p). Thus P1K̂0P1 = 0. The definitions (3.21), (3.22) of
Û , V̂ imply that they vanish on δ0 ⊗ F , so

P1Û = P1V̂ = 0, Û P1 = V̂P1 = 0.
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Since K̂0, Û are “non-random”, we have for j = 0, 1, 2,

Pj K̂0P3 = 0, P3K̂0Pj = 0, Pj Û P3 = 0, P3Û Pj = 0.

Since V̂ is mean zero on L2(�) and B1 = B†1 = 0, we have

P⊥
3 V̂P⊥

3 = 0, P⊥
3 B = BP⊥

3 = 0.

Corollary 4.7. On Ĥ the operator L̂0 = iK̂0 + iÛ + iλV̂ + B has block decomposition

L̂0 =

⎛

⎜⎜⎝

0 0 0 0
0 0 iP1K̂0P2 0
0 iP2K̂0P1 P2(iK̂0 + iÛ)P2 iλP2V̂P3
0 0 iλP3V̂P2 P3L̂0P3

⎞

⎟⎟⎠ . (4.12)

4.3. Spectral gap. With the block decomposition (4.12), we are now in a position to
prove that L̂0 has a spectral gap.

Lemma 4.8. If λ > 0, then 0 is a non-degenerate eigenvalue of L̂0 and there is g > 0
such that

σ(L̂0) = {0} ∪ �+

with �+ ⊂ {z : Rez > g}. For λ small, there is c = c(p, ‖ĥ‖∞, ‖u‖∞, γ, T, b) > 0
such that g ≥ cλ2.

Before proceeding to the proof of the lemma, we note that the sectoriality of B places
further restrictions on �+. Indeed, ReL̂0 = ReB ≥ 0 in the sense of quadratic forms.
Thus, by the sectoriality of B,

∣∣Im〈�, L̂0�〉∣∣ ≤ ∥∥K̂0 + Û + λV̂
∥∥ + |Im〈�, B�〉|

≤ 2‖ĥ‖∞ + 2‖u‖∞ + 2λ + γRe〈�, L̂0�〉,
if ‖�‖ = 1. It follows that the numerical range Num(L̂0) = {〈

�, L̂0�
〉 ∣∣ ‖�‖ = 1

}
is

contained in

N+ := {z : Rez ≥ 0 and |Imz| ≤ 2‖ĥ‖∞ + 2‖u‖∞ + 2λ + γRez}. (4.13)

Since σ(L̂0) ⊂ Num(L̂0), we find that �+ ⊂ {Rez > g} ∩ N+— see Fig. 1.
To prove Lemma 4.8, it suffices to show that the restriction of L̂0 to Ĥ⊥

0 = Ĥ1 ⊕
Ĥ2 ⊕ Ĥ3,

J =
⎛

⎝
0 iP1K̂0P2 0

iP2K̂0P1 P2(iK̂0 + iÛ)P2 iλP2V̂P3
0 iλP3V̂P2 P3L̂0P3

⎞

⎠ , (4.14)

has spectrum contained in {Rez > g}.
Lemma 4.9. There is g > 0, such that whenever Rez < g,

(1) �3 − z is boundedly invertible on Ĥ3, where �3 = P3L̂0P3,
(2) �2(z) − z is boundedly invertible on Ĥ2, where

�2(z) = P2
(
iK̂0 + iÛ + λ2V̂ (�3 − z)−1 V̂

)
P2, (4.15)
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Fig. 1. Spectral gap of L̂0

(3) J − z is boundedly invertible on Ĥ⊥
0 .

In particular,J is boundedly invertible. Let�2 be the projection ontoKer(P1K̂0) � Ĥ2.
If �2φ̃ �= 0 for some φ̃ ∈ Ĥ2, then P2J −1φ̃ �= 0 and

Re
〈
φ̃, P2J −1φ̃

〉
≥ g‖P2J −1φ̃‖2 > 0. (4.16)

Proof. We obtain this result by repeated applications of the Schur complement formula.
As observed above, wemay restrict attention to the sectorial domain z ∈ N+. Fix z ∈ N+
and consider the equation

(J − z)

⎛

⎝
ζ

φ

�

⎞

⎠ =
⎛

⎝
−z iP1K̂0P2 0

iP2K̂0P1 P2(iK̂0 + iÛ)P2 − z iλP2V̂P3
0 iλP3V̂P2 P3L̂0P3 − z

⎞

⎠

⎛

⎝
ζ

φ

�

⎞

⎠ =
⎛

⎝
ζ̃

φ̃

�̃

⎞

⎠ ,

(4.17)
for (ζ, φ,�) ∈ Ĥ1 ⊕ Ĥ2 ⊕ Ĥ3 given (̃ζ , φ̃, �̃) ∈ Ĥ1 ⊕ Ĥ2 ⊕ Ĥ3. By the gap condition
(2.4) on B,

ReP3L̂0P3 = ReP3(iK̂0 + iÛ + B + iλV̂)P3 ≥ 1

T
P3.

Therefore, �3 − z = P3L̂0P3 − z is boundedly invertible on Ĥ3 provided Rez < 1
T . For

such z, we may solve the third equation of (4.17) to obtain

� = (�3 − z)−1�̃ − (�3 − z)−1 iλV̂φ. (4.18)

Using the solution (4.18), we reduce the second equation of (4.17) to

[�2(z) − z] φ = φ̃ − iP2K̂0ζ − iλP2V̂ (�3 − z)−1�̃ (4.19)

with�2(z) as in (4.15). Forϕ⊗1 ∈ Ĥ2 = L2(Zd\{0}; C
⊗p), notice thatϕ⊗1 = P2ϕ⊗1

and �2 = P2�2, we have

Re 〈ϕ ⊗ 1, �2(z) ϕ ⊗ 1〉Ĥ2
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= Re 〈ϕ ⊗ 1, �2(z) ϕ ⊗ 1〉Ĥ
=
〈
ϕ ⊗ 1,

1

2
(�2(z) + �

†
2(z)) ϕ ⊗ 1

〉

Ĥ
= λ2

〈
P3(�3 − z)−1V̂ ϕ ⊗ 1, (ReB − Rez) P3(�3 − z)−1V̂ ϕ ⊗ 1

〉

Ĥ

≥ λ2
(
1

T
− Rez

)∥∥∥P3(�3 − z)−1V̂ ϕ ⊗ 1
∥∥∥
2

Ĥ

= λ2
(
1

T
− Rez

)∥∥∥(�3 − z)−1V̂ ϕ ⊗ 1
∥∥∥
2

Ĥ3

= λ2
(
1

T
− Rez

)∥∥∥∥
(
B−1(�3 − z)

)−1
B−1V̂ ϕ ⊗ 1

∥∥∥∥
2

Ĥ3

(4.20)

where the inverse of B is well defined since V̂ϕ ⊗ 1 ∈ Ĥ3 = RanP3. Furthermore,
B−1 is bounded on Ĥ3, with

∥∥B−1P3
∥∥ ≤ T . Thus B−1(�3 − z) is bounded for z ∈

N+ ∩ {Rez < 1
T } by,

∥∥∥B−1P3(�3 − z)P3
∥∥∥Ĥ ≤ 1 +

∥∥∥B−1P3(K̂0 + Û + λV̂)

∥∥∥ + |z|
∥∥∥B−1P3

∥∥∥

≤ 1 + T (2‖ĥ‖∞ + 2‖u‖∞ + 2λ + |z|)
≤ 2 + γ + 4T (‖ĥ‖∞ + ‖u‖∞ + λ). (4.21)

Putting (4.20), (4.21) and (2.6) together, we obtain

Re 〈ϕ ⊗ 1, �2(z) ϕ ⊗ 1〉Ĥ2
≥ λ2

(
1

T
− Rez

) ∥∥B−1V̂ ϕ ⊗ 1
∥∥2Ĥ∥∥B−1(�3 − z)
∥∥2Ĥ

≥ λ2
(
1

T
− Rez

)
∑

σ∈Zp

∑
x �=0

χ2|πσ ϕ(x)|2
(
2 + γ + 4T (‖ĥ‖∞ + ‖u‖∞ + λ)

)2

= λ2χ2(1 − TRez)

T
(
2 + γ + 4T (‖ĥ‖∞ + ‖u‖∞ + λ)

)2 ‖ϕ ⊗ 1‖2Ĥ2
.

Let

c1 = λ2χ2

T
(
λ2χ2 + 2

(
2 + γ + 4T (‖ĥ‖∞ + ‖u‖∞ + λ)

)2) , (4.22)

so that λ2χ2

T (2+γ+4T (‖ĥ‖∞+‖u‖∞+λ))
2 (1 − T c1) = 2c1. Then for z ∈ N+ ∩ {Rez ≤ c1}, we

have

Re�2(z) − Rez ≥ 2c1 − Rez ≥ c1, (4.23)

implying that �2(z) − z is boundedly invertible. Thus, (4.19) can be solved on Ĥ2 to
obtain
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φ = (�2(z) − z)−1φ̃ − (�2(z) − z)−1iP2K̂0ζ

−(�2(z) − z)−1iλP2V̂ (�3 − z)−1�̃. (4.24)

Now, the first equation of (4.17) reduces to the following

[�1(z) − z]ζ = ζ̃ − iP1K̂0 (�2(z) − z)−1φ̃

−λP1K̂0(�2(z) − z)−1P2V̂ (�3 − z)−1�̃, (4.25)

where �1(z) = P1K̂0(�2(z)− z)−1P2K̂0P1. We will use the same strategy to show that
�1(z) − z is invertible. Take ζ = δ0 ⊗ −→w ⊗ 1 ∈ Ĥ1. Recall, by definition of Ĥ1, that−→w ⊥ −→

1 . Thus, by (4.23) and Corollary 4.5,

Re 〈ζ, �1(z)ζ 〉Ĥ1

=
〈
(�2(z) − z)−1K̂0ζ, (Re�2(z) − Rez) (�2(z) − z)−1 K̂0ζ

〉

Ĥ
≥ c1c0

‖�2(z) − z‖2Ĥ
‖ζ‖2Ĥ . (4.26)

For z ∈ N+ ∩ {Rez < 1
2T },

‖�2(z) − z‖Ĥ ≤ 2‖ĥ‖∞ + 2‖u‖∞ + 4λ2
∥∥∥(P3L̂0P3 − z)−1

∥∥∥Ĥ3
+ |z|

≤ 4‖ĥ‖∞ + 4‖u‖∞ + 4λ2
(
1

T
− 1

2T

)−1

+ 2λ + (γ + 1)Rez

= 4‖ĥ‖∞ + 4‖u‖∞ + 8Tλ2 + 2λ + (γ + 1)(2T )−1,

(4.27)

by (4.15) and (2.4). Putting (4.26) and (4.27) together, we obtain

Re 〈ζ, �1(z)ζ 〉Ĥ1

≥ c1c0
(
4‖ĥ‖∞ + 4‖u‖∞ + 8Tλ2 + 2λ + (γ + 1)(2T )−1

)2 ‖ζ‖2Ĥ =: c2 ‖ζ‖2Ĥ .

Therefore, Re�1(z) > Rez on Ĥ1 provided z ∈ N+ andRez < min{c1, 1
2T , c2} =: g.

For such z it follows that �1(z) − z is boundedly invertible and (4.25) can be solved
on Ĥ1. Therefore, (4.17) is explicitly solvable on Ĥ = Ĥ1 ⊕ Ĥ2 ⊕ Ĥ3 and J − z is
boundedly invertible for all z ∈ {z : |Rez| < g}⋂N+.

To prove the second part of Lemma 4.9, it is enough to solve J� = �̃ for � =
(ζ, φ,�) given �̃ = (0, φ̃, 0). The three equations are reduced to

iP1K̂0P2 φ = 0

iP2K̂0P1 ζ + P2(iK̂0 + iÛ)P2 φ + iλP2V̂P3 � = φ̃

iλP3V̂P2 φ + P3L̂0P3 � = 0.

The first equation implies φ ∈ Ker(P1K̂0). Therefore, φ = �2φ, where �2 is the
projection onto the kernel of P1K̂0. As derived in the general case, the second and the
third equations imply that

iP2K̂0 P1ζ + �2φ = φ̃. (4.28)
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If ξ satisfies P1K̂0ξ = 0, then
〈
ξ, K̂0 P1ζ

〉 = 〈
P1K̂0ξ, P1ζ

〉 = 0. Therefore,
�2K̂0P1ζ = 0. Applying �2 to (4.28), we have

�2�2�2 φ = �2φ̃.

Clearly, if �2φ̃ �= 0, then φ = P2� = P2J −1φ̃ �= 0. Notice that
〈
K̂0 P1ζ, φ

〉 =〈
K̂0 P1ζ, �2φ

〉 = 〈�2K̂0 P1ζ, �2φ
〉 = 0. Equation (4.28) also implies that

Re
〈
φ̃, φ

〉 = Re
〈
iP2K̂0 P1ζ + �2φ, φ

〉 = Re 〈�2φ, φ〉 ≥ 2c1 ‖φ‖2 ≥ g ‖φ‖2 > 0,

which completes the proof of (4.16).

The spectral gap g of L̂0 has consequences for the dynamics of the semi-group.

Lemma 4.10. Let Q0 = orthogonal projection onto Ĥ0 = span δ0 ⊗ −→
1 ⊗ 1 in

L2(M̂; C
⊗p). Then e−tL̂0(1 − Q0) is a contraction semi-group on Ran(1 − Q0), and

for all sufficiently small ε > 0 there is Cε > 0 such that
∥∥∥e−tL̂0(1 − Q0)

∥∥∥
L2(M̂;C⊗p)

≤ Cεe
−t (g−ε) (4.29)

Lemma 4.11. There is c0 > 0 such that
∥∥L̂k − L̂0

∥∥
L2(M̂;C⊗p)

≤ c0|k|.
If |k| is sufficiently small, the spectrum of L̂k consists of:

(1) A non-degenerate eigenvalue E(k) contained in S0 = {z : |z| < c0|k|}.
(2) The rest of the spectrum is contained in the half plane S1 = {z : Rez > g − c0|k|}

such that S0 ∩ S1 = ∅.
Furthermore, E(k) is C2 in a neighborhood of 0,

E(0) = 0, ∇E(0) = 0. (4.30)

Denote ∂ j = ∂k j and ϕ0 = 1√⊗pδ0 ⊗ −→
1 ⊗ 1 for simplicity where ⊗p = p1 · p2 . . . pd ,

then

∂i∂ j E(0) =
〈
∂ j K̂0ϕ0, P2J −1 ∂i K̂0ϕ0

〉
+
〈
∂i K̂0ϕ0, P2J −1 ∂ j K̂0ϕ0

〉
(4.31)

where P2,J and J −1 are given in (4.14) and Lemma 4.9.

Remark 4.12. Let D := (
Di, j

)
d×d = (

∂i∂ j E(0)
)
d×d . It is clear from (4.31) that D is

symmetric. Furthermore, for any k ∈ T
d , in view of the expression of ∂i K̂0 in (3.26),

0 �= ∑
i ki∂i K̂0ϕ0 ∈ �2(Zd) ⊗ −→

1 ⊗ 1. It is non-zero due the non-degeneracy of h.
Therfore, by (4.16) in Lemma 4.9,

Re 〈k, Dk〉 = 2Re

〈
∑

i

ki∂i K̂0ϕ0, P2J −1
∑

i

ki∂i K̂0ϕ0

〉

> 2g

∥∥∥∥∥P2J
−1
∑

i

ki∂i K̂0ϕ0

∥∥∥∥∥

2

> 0.

In the next section, we will relate the matrix element of D with limits of diffusively
scaled moments. From the real valued moments, we will see that ∂i∂ j E(0) ∈ R and then
D is positive definite.
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Similar to Lemma 4.10, dynamical information about the semi-group e−tL̂k follows
from the spectral gap of L̂k in Lemma 4.11:

Lemma 4.13. If ε is sufficiently small, then there is Cε < ∞ such that
∥∥∥e−tL̂k(1 − Qk)

∥∥∥
L2(M̂;C⊗p)

≤ Cεe
−t (g−ε−c0|k|)

for all sufficiently small k.

Notice that ⊗p = p1 · p2 · · · pd . The case where d = 1 and ⊗p = p1 = 1 is
equivalent to the free case considered in [17], where the above lemmas were proved.
The proof follows from the standard perturbation theory of analytic semi-groups—see
for instance [9,18]. There are no essential differences in the proof when ⊗p > 1. We
omit the proofs for Lemmas 4.10–4.13 here. We only sketch the proofs for (4.30) and
(4.31), which plays the most important role for the explicit expression of the diffusion
constant in the next section.

Proof of (4.30) and (4.31). Write ∂ j = ∂k j for short. Let E(k) be the non-degenerate
eigenvalueof L̂k, and the associatednormalized eigenvectorϕk. LetQk be theorthogonal
projection onto ϕk. Clearly E(0) = 0, ϕ0 = 1√⊗p

δ0 ⊗ −→
1 ⊗ 1 and L̂0ϕ0 = L̂†

0ϕ0 = 0.
Since

L̂kϕk = E(k)ϕk, (4.32)

direct computation shows

∂ j L̂k ϕk + L̂k∂ jϕk = ∂ j E(k)ϕk + E(k)∂ jϕk (4.33)

�⇒ ∂ j L̂0ϕ0 + L̂0∂ jϕ0 = ∂ j E(0)ϕ0. (4.34)

Notice that ∂ j L̂0 = i∂ j K̂0 maps Ĥ0 = Ran Q0 to Ĥ2, therefore, Q0∂ j L̂0 = 0 and

∂ j E(0) = 〈ϕ0, ∂ j L̂0ϕ0
〉
+
〈
ϕ0, L̂0∂ jϕ0

〉 = 〈Q0ϕ0, ∂ j L̂0ϕ0
〉
+
〈
L̂†

0ϕ0, ∂ jϕ0

〉
= 0.

Differentiating (4.33) again, we have

∂i∂ j L̂kϕk + ∂ j L̂k∂iϕk + ∂i L̂k∂ jϕk + L̂k∂i∂ jϕk

= ∂i∂ j E(k)ϕk + ∂ j E(k)∂iϕk + ∂i E(k)∂ jϕk + E(k)∂i∂ jϕk. (4.35)

Evaluating (4.35) at k = 0 and using ∇E(0) = 0, we have that

∂i∂ j L̂0ϕ0 + ∂ j L̂0∂iϕ0 + ∂i L̂0∂ jϕ0 + L̂0∂i∂ jϕ0 = ∂i∂ j E(0)ϕ0.

We also have Q0∂i∂ j L̂0 = 0 for the same reason as for Q0∂ j L̂0. Notice that ∂ j L̂0 =
i∂ j K̂0 = −∂ j L̂†

0 and ∂ j L̂0ϕ0 ∈ �2(Zd\{0}) ⊗ −→
1 ⊗ 1 because of (3.26). Corollary 4.5

implies ∂ j L̂0ϕ0 ∈ Ker(P1K̂0) = Ran(�2) � Ĥ2. Therefore,

∂ j∂ j E(0) = 〈ϕ0, ∂ j L̂0∂iϕ0
〉
+
〈
ϕ0, ∂i L̂0∂ jϕ0

〉

= i
〈
∂ j K̂0 ϕ0, ∂iϕ0

〉
+ i
〈
∂i K̂0 ϕ0, ∂ jϕ0

〉

= i
〈
P2∂ j K̂0 ϕ0, P2∂iϕ0

〉
+ i
〈
P2∂i K̂0 ϕ0, P2∂ jϕ0

〉
.
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It remains to solve

∂ j L̂0ϕ0 + L̂0∂ jϕ0 = 0

i.e.,
i∂ j K̂0ϕ0 + L̂0∂ jϕ0 = 0 (4.36)

for P2∂iϕ0. Recall the block form of L̂0 in (4.12) andJ in (4.14). The key fact ∂ j K̂0ϕ0 =
�2∂ j K̂0ϕ0 ∈ Ĥ2 reduces Eq. (4.36) to what we have considered in the second part of
Lemma 4.9:

⎛

⎜⎜⎝

0 0 0 0
0 0 iP1K̂0P2 0
0 iP2K̂0P1 P2(iK̂0 + iÛ)P2 iλP2V̂P3
0 0 iλP3V̂P2 P3L̂0P3

⎞

⎟⎟⎠

⎛

⎜⎝

∗
∗

P2∂ jϕ0
∗

⎞

⎟⎠ =
⎛

⎜⎝

0
0

−i∂ j K̂0ϕ0
0

⎞

⎟⎠ .

As derived in Lemma 4.9:

P2∂ jϕ0 = −iP2J −1 ∂ j K̂0ϕ0,

where P2 is the projection onto Ĥ2. Therefore,

∂ j∂ j E(0) = i
〈
∂ j K̂0 ϕ0, −iP2J −1 ∂i K̂0ϕ0

〉
+ i
〈
∂i K̂0 ϕ0, −iP2J −1 ∂ j K̂0ϕ0

〉

=
〈
∂ j K̂0 ϕ0, P2J −1 ∂i K̂0ϕ0

〉
+
〈
∂i K̂0 ϕ0, P2J −1 ∂ j K̂0ϕ0

〉
,

which gives (4.31).

5. Proof of the Main Results

5.1. Central limit theorem. We first prove (2.12) for bounded continuous f and nor-
malized ψ0 ∈ �2(Zd). The extension to quadratically bounded f follows from some
standard arguments combining (2.12) for bounded continuous f and diffusive scaling
for second moments, Lemma 5.1.We refer readers to Section 4.5 in [25] for more details
about this extension. We omit the proof of the extension here.

To prove (2.12) for bounded continuous f , it suffices, by Levy’s Continuity Theorem
and a limiting argument, to prove

lim
t→∞

∑

x∈Zd

e
ik· x√

t E

(
|ψt (x)|2

)
= e− 1

2 〈k, Dk〉, (5.1)

where ψt (x) ∈ �2(Zd) is the solution to Equation (2.1) with initial condition ψ0 ∈
�2(Zd). As pointed out in Section 4.2, [25], it is enough to establish Equation (5.1) for
ψ0 ∈ �1(Zd); it then extends to all ofψ0 ∈ �2(Zd) by a limiting argument. So throughout
this section, we assume that

‖ψ0‖�2 = 1, and ‖ψ0‖�1 :=
∑

x∈Zd

|ψ0(x)| < ∞. (5.2)

We also denote for simplicity

ϕ0 := ϕ0(x, ω) = 1√⊗p
δ0 ⊗ −→

1 ⊗ 1, �k := �k(x, ω) = √⊗p · ρ̂0;k(x) ⊗ 1, (5.3)
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where
−→
1 , ρ̂0;k(x) ∈ C

⊗p are defined in (3.31). Recall that for any σ ∈ Zp

πσ
−→
1 = 1, πσ ρ̂0;0(x) =

∑

n∈pZd+σ

ψ0(x − n)ψ0(−n).

By (3.33), we have

∑

x∈Zd

e
i k√

t
x
E

(
|ψt (x)|2

)
=
〈
ϕ0 , e−tL̂k/

√
t � k√

t

〉

L2(M̂;C⊗p)

.

Letting Qk denote the Riesz projection onto the eigenvector of L̂k near zero, we have

∑

x∈Zd

e
i k√

t
x
E

(
|ψt (x)|2

)
=
〈
ϕ0 , e−tL̂k/

√
t Q k√

t
� k√

t

〉
+

〈
ϕ0 , e−tL̂k/

√
t

(
1 − Q k√

t

)
� k√

t

〉

= e
−t E( k√

t
)
〈
ϕ0 , Q k√

t
� k√

t

〉
+

〈
ϕ0 , e−tL̂k/

√
t

(
1 − Q k√

t

)
� k√

t

〉
.

(5.4)

By Lemma 4.13, the second term in (5.4) is exponentially small in the large t limit,
∣∣∣∣

〈
ϕ0 , e−tL̂k/

√
t

(
1 − Q k√

t

)
� k√

t

〉∣∣∣∣ ≤
∥∥∥∥(1 − Q k√

t
)e−tL̂k/

√
t

∥∥∥∥ · ‖ϕ0‖ ·
∥∥∥∥� k√

t

∥∥∥∥

≤ Cεe
−t (g−ε−c |k|√

t
) · ‖ϕ0‖ ·

∥∥∥∥� k√
t

∥∥∥∥ . (5.5)

Direct computation shows that

lim
t→∞

∥∥∥∥� k√
t

∥∥∥∥
2

L2(M̂;C⊗p)

= (⊗p)
∥∥ρ̂0;0

∥∥2
�2(Zd ;C⊗p)

≤ (⊗p)
∑

σ∈Zp

∑

x∈Zd

∣∣∣∣∣∣

∑

n∈pZd+σ

ψ0(x − n)ψ0(−n)

∣∣∣∣∣∣

2

≤ (⊗p) ‖ψ0‖2�2
∑

σ∈Zp

⎛

⎝
∑

n∈pZd+σ

|ψ0(−n)|
⎞

⎠
2

≤ (⊗p) ‖ψ0‖2�2 · ‖ψ0‖2�1 < ∞.

Therefore, in (5.5),

∣∣∣∣∣

〈
ϕ0 , e

−tL̂ k√
t

(
1 − Q k√

t

)
� k√

t

〉∣∣∣∣∣ −→ 0 as t → ∞.

Regarding the first term in (5.4), we have by Taylor’s formula,

E

(
k√
t

)
= 1

2

∑

i, j

∂ j∂ j E(0)
ki√
t

k j√
t
+ o(

1

t
) = 1

2t

∑

i, j

∂ j∂ j E(0)ki k j + o(
1

t
),

since E(0) = ∇E(0) = 0. Thus,

e−t E(k/
√
t) = e−t 1

2t

∑
i, j ∂ j ∂ j E(0)ki k j + o(1) = e− 1

2

∑
i, j ∂ j ∂ j E(0)ki k j + o(1). (5.6)
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Direct computation shows that

〈ϕ0, �0〉L2(M̂;C⊗p) =
〈
δ0 ⊗ −→

1 ⊗ 1 , ρ̂0;0 ⊗ 1
〉

L2(M̂;C⊗p)

=
∑

σ∈Zp

∑

n∈pZd+σ

ψ0(−n)ψ0(−n) = ‖ψ0‖2�2(Zd ;C)
= 1.

Thus,

Q0�0 = Projϕ0
�0 = 〈ϕ0, �0〉 · ϕ0

‖ϕ0‖2
= ϕ0. (5.7)

Putting together everything, we have

lim
t→∞

∑

x∈Zd

e
i k√

t
x
E

(
|ψt (x)|2

)
= lim

t→∞ e
−t E

(
k√
t

) 〈
ϕ0 , Q k√

t
� k√

t

〉

= e− 1
2

∑
i, j ∂ j ∂ j E(0)ki k j 〈ϕ0 , Q0�0〉 = e− 1

2

∑
i, j ∂ j ∂ j E(0)ki k j .

Therefore, (5.1) holds true with Di, j = ∂ j∂ j E(0) for any normalized ψ0 ∈ �2(Zd).

5.2. Diffusive scaling and reality of the diffusion matrix. We proceed to prove the dif-
fusive scaling (2.13) under the assumption that

∑

x

|ψ0(x)|2 = 1,
∑

x

|x |2 |ψ0(x)|2 < ∞. (5.8)

Similar to (5.2), it is enough to establish the results for xψ0 ∈ �1(Zd); it then extends
to all of xψ0 ∈ �2(Zd) by a limiting argument. We assume that

∑

x

|x | |ψ0(x)| < ∞. (5.9)

We continue to use the notation in (5.3). Also, 〈·, ·〉 will stand for 〈·, ·〉L2(M̂;C⊗p) unless
otherwise specified. We also denote ∂i = ∂ki , i = 1, . . . , d for short.

As pointed out in Section 4.4 in [25],
∑

x (1 + |x |2)|ψt (x)|2 ≤ eCt for each t > 0.
Thus the second moments of the position

Mi, j (t) :=
∑

x∈Zd

xi x jE
(
|ψt (x)|2

)
(5.10)

are well defined and finite. The main task of this section is to show that Mi, j (t) ∼ Di, j t ,
where Di, j = ∂i∂ j E(0) are given in (4.31). More precisely,

Lemma 5.1. Let P2J −1 be as in Lemma 4.9. Suppose the initial valueψ0 satisfies (5.8),
then for all 1 ≤ i, j ≤ d,

lim
t→∞

1

t
Mi, j (t) =

〈
∂ j K̂0ϕ0, P2J −1 ∂i K̂0ϕ0

〉
+
〈
∂i K̂0ϕ0, P2J −1 ∂ j K̂0ϕ0

〉
= ∂i∂ j E(0).

As a consequence, ∂i∂ j E(0) ∈ R and D = (
∂i∂ j E(0)

)
d×d is positive definite. In par-

ticular,

lim
t→∞

1

t

∑

x∈Zd

|x |2 E

(
|ψt (x)|2

)
= 2

d∑

i=1

〈
∂i K̂0ϕ0, P2J −1 ∂i K̂0ϕ0

〉
= tr D ∈ (0,∞).
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By (3.33), we have

Mi, j (t) = − ∂i∂ j

∑

x∈Zd

eik·x
E

(
|ψt (x)|2

)
∣∣∣∣∣∣
k=0

= − ∂i∂ j

〈
ϕ0, e−tL̂k �k

〉∣∣∣
k=0

.

(5.11)

The following decomposition of Mi, j is essentially contained in [25]. We sketch the
proof in Appendix 5.3 for reader’s convenience.

Lemma 5.2. For all 1 ≤ i, j ≤ d and t ∈ R
+, Mi, j =

5∑
n=1

Nn, where

N1 = − 〈ϕ0 , ∂i∂ j�0
〉 ; (5.12)

N2 =
∫ t

0

[〈
∂i L̂†

0ϕ0 , e−sL̂0 (1 − Q0) ∂ j�0

〉

+
〈
∂ j L̂†

0ϕ0 , e−sL̂0 (1 − Q0) ∂i�0

〉]
ds; (5.13)

N3 =
∫ t

0

〈
∂i∂ j L̂†

0 ϕ0 , e−sL̂0 (1 − Q0)�0

〉
ds; (5.14)

N4 = −
∫ t

0

∫ s

0

[〈
∂i L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂ j L̂0 e
−rL̂0 (1 − Q0)�0

〉
; (5.15)

+
〈
∂ j L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂i L̂0 e
−rL̂0 (1 − Q0)�0

〉]
dr ds (5.16)

N5 = −
∫ t

0

∫ s

0

[〈
∂i L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂ j L̂0 Q0�0

〉
; (5.17)

+
〈
∂ j L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂i L̂0 Q0�0

〉]
dr ds. (5.18)

Combining the above decomposition and the contraction property of e−tL̂0 in
Lemma 4.10, we have the following convergence of Nn , which implies Lemma 5.1
immediately.

Lemma 5.3. Let Mi, j =
5∑

n=1
Nn be given as in Lemma 5.2. Then

lim
t→∞

1

t
|Nn| = 0, n = 1, . . . , 4. (5.19)

lim
t→∞

1

t
N5 =

〈
∂i K̂0 ϕ0 , P2J −1∂ j K̂0 ϕ0

〉
+
〈
∂ j K̂0 ϕ0 , P2J −1∂i K̂0 ϕ0

〉
. (5.20)

Proof. Case n = 1: Note that ∂i∂ j�0 = √⊗p ∂i∂ j ρ̂0;k
∣∣
k=0 ⊗ 1. Direct computation

by (3.31) shows

πσ ∂i∂ j ρ̂0;0(x) = −
∑

n∈pZd+σ

nin jψ0(x − n)ψ0(−n). (5.21)
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Therefore, by (5.12)

|N1| =
∣∣∣
〈
δ0 ⊗ −→

1 ⊗ 1 , ∂i∂ j ρ̂0;0 ⊗ 1
〉∣∣∣ =

∣∣∣∣∣∣

∑

n∈Zd

ni n j |ψ0(n)|2
∣∣∣∣∣∣
≤
∑

n∈Zd

|n|2|ψ0(n)|2.

Clearly, |N1| is uniformly bounded in t by (5.8), which implies lim
t→∞

1
t |N1(t)| = 0.

Case n = 2: By (3.31) and the same computation as in (5.21), we have ∂ j�0 =
∂ j ρ̂0;k

∣∣
k=0 ⊗ 1 with

πσ ∂ j ρ̂0;0(x) = −i
∑

n∈pZd+σ

n j ψ0(x − n)ψ0(−n). (5.22)

By (5.8), (5.9) and direct computation, we obtain

∥∥∂ j ρ̂0;0
∥∥2

�2(Zd ;C⊗p)
≤
∑

σ∈Zp

∑

x∈Zd

∣∣∣∣∣∣

∑

n∈pZd+σ

n j ψ0(x − n)ψ0(−n)

∣∣∣∣∣∣

2

≤ ‖ψ0‖2�2
∑

σ∈Zp

⎛

⎝
∑

n∈pZd+σ

|n| |ψ0(−n)|
⎞

⎠
2

≤ ‖ψ0‖2�2 · ‖xψ0‖2�1 < ∞.

By Lemma 3.10,
∥∥∂ j L̂0

∥∥
L2(M̂;C⊗p)

= ∥∥∂ j K̂0
∥∥
L2(M̂;C⊗p)

≤ ‖ĥ′‖∞.

By Lemma 4.10, we have
∫ t

0

∣∣∣
〈
∂i L̂†

0ϕ0 , e−sL̂0 (1 − Q0) ∂ j�0

〉∣∣∣ ds

≤ ∥∥∂i K̂0ϕ0
∥∥ · ∥∥∂ j�0

∥∥ · Cε

∫ t

0
e−s(g−ε) ds

≤ ‖ĥ′‖∞ · √⊗p · ∥∥∂ j ρ̂0;0
∥∥ · Cε

g − ε
< ∞.

Therefore, lim
t→∞

1
t |N2(t)| = 0.

Case n = 3: N3 can be estimated exact in the same way as N2. Again by Lemma 3.10,
we have

∥∥∂i∂ j L̂0
∥∥
L2(M̂;C⊗p)

= ∥∥∂i∂ j K̂0
∥∥
L2(M̂;C⊗p)

≤ ‖ĥ′′‖∞.

By Lemma 4.10, we have

sup
t

|N3(t)| ≤ sup
t

∫ t

0

∣∣∣
〈
∂i∂ j L̂†

0ϕ0 , e−sL̂0 (1 − Q0)�0

〉∣∣∣ ds

≤‖ĥ′′‖∞ · √⊗p · ∥∥ρ̂0;0
∥∥

�2
· Cε

g − ε
< ∞,
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which gives lim
t→∞

1
t |N3(t)| = 0.

Case n = 4: N4 can be estimated by applying Lemma 4.10 twice:

sup
t

∫ t

0

∫ s

0

〈
∂i L̂†

0 ϕ0 , e−(s−r)L̂0 (1 − Q0)∂ j L̂0 e
−rL̂0(1 − Q0)�0

〉
dr ds

≤ ∥∥∂i K̂0ϕ0
∥∥ · ∥∥∂ j L̂0

∥∥ · ‖�0‖ · C2
ε sup

t

∫ t

0

∫ s

0
e−(s−r)(g−ε) e−r(g−ε) dr ds

≤ ‖ĥ′‖2∞ · √⊗p · ∥∥ρ̂0;0
∥∥

�2
· C2

ε ·
(

1

g − ε
+

1

(g − ε)2

)
< ∞,

and thus, lim
t→∞

1
t |N4(t)| = 0.

Case n = 5: It remains to estimate 1
t N5. Recall we obtained Q0�0 = ϕ0 in (5.7). This

1

t

∫ t

0

∫ s

0

〈
∂i L̂†

0 ϕ0 , e−(s−r)L̂0 (1 − Q0)∂ j L̂0 e
−rL̂0 Q0 �0

〉
dr ds

= −
〈
∂i K̂0 ϕ0 ,

(
1

t

∫ t

0

∫ s

0
e−(s−r)L̂0 dr ds

)
∂ j K̂0 ϕ0

〉
,

since ∂ j K̂0ϕ0 ∈ Ran(1 − Q0), (1 − Q0)∂ j K̂0ϕ0 = ∂ j K̂0ϕ0.
Since ReL̂0 ≥ 0, by a standard contour integral argument, the following formula was

obtained in [17,25]

lim
t→∞

1

t

∫ t

0

∫ s

0
�2e

−(s−r)L̂0�2 dr ds = �2
(
(1 − Q0)L̂0(1 − Q0)

)−1
�2 = �2J −1�2,

(5.23)

where J −1 is as in Lemma 4.9 . Recall that ∂i K̂0 ∈ Ran(�2) ⊆ Ran(P2). Thus

lim
t→∞

1

t
N5 =

〈
∂i K̂0 ϕ0 , �2J −1�2∂ j K̂0 ϕ0

〉
+
〈
∂ j K̂0 ϕ0 , �2J −1�2∂i K̂0 ϕ0

〉

=
〈
∂i K̂0 ϕ0 , P2J −1∂ j K̂0 ϕ0

〉
+
〈
∂ j K̂0 ϕ0 , P2J −1∂i K̂0 ϕ0

〉

= ∂i∂ j E(0),

where the last line follows from the formula of ∂i∂ j E(0) in (4.31).

5.3. Limiting behavior of D(λ) for small λ. The following lemma can be found in [25].
It will be the main tool for us to study the asymptotic behavior of D(λ).

Lemma 5.4 (Lemma D.1, [25]). Let A and R be bounded operators on a Hilbert space
H. If A is normal, ReA ≥ 0 and ReR ≥ c > 0, then for any φ,ψ ∈ H,

lim
η→0

〈
φ,
(
η−1A + R

)−1
ψ

〉

H
=
〈
�φ, (�R�)−1 �ψ

〉

Ran�

where � = projection onto the kernel of A.
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Remark 5.5. A similar statement holds for a family of bounded operators Rη such that
ReRη ≥ c > 0 and limη→0 Rη = R0 in the strong operator topology and R0 ≥ c > 0,
i.e.,

lim
η→0

〈
φ,
(
η−1A + Rη

)−1
ψ

〉

H
=
〈
�φ, (�R0�)−1 �ψ

〉

Ran�
.

In view of Lemma 4.9, we want to have the block form of the above lemma.

Lemma 5.6. Let A be a bounded self-adjoint operator on a Hilbert spaceH = H1⊕H2
with the following block form:

A =
(

0 A2

A†
2 A3

)
, A†

3 = A3. (5.24)

Let � = projection onto the kernel of A, �2 = projection onto the kernel of A2 and
�̃ = projection onto the kernel of �2A3�2. For any ϕ = �2ϕ,

�ϕ = 0 if and only if �̃ϕ = 0.

Proof. For any ϕ ∈ H, direct application of Lemma 5.4 to I + i η−1A gives

lim
η→0

〈
ϕ, (I + i η−1A)−1ϕ

〉
=
〈
�ϕ, (� I �)−1�ϕ

〉
= ‖�ϕ‖2 . (5.25)

Let P1, P2 be the projection onto H1,H2 correspondingly and consider ϕ ∈ Ran(�2).
By the block form of A and Schur’s formula, we have

〈
ϕ, (I + i η−1A)−1ϕ

〉
=
〈
ϕ, (P2 + iη−1A3 + η−2A†

2A2)
−1 ϕ

〉

=
〈
ϕ, �2(P2 + iη−1A3 + η−2A†

2A2)
−1�2 ϕ

〉
. (5.26)

If we apply Schur’s formula one more time with respect to the decomposition H2 =
Ran(�2) ⊕ Ran(�⊥

2 ) and notice that �2A
†
2 = A2�2 = 0, then we have

〈
ϕ, (I + i η−1A)−1ϕ

〉
=
〈
ϕ,
(
iη−1�2A3�2 + �2 + Ã

)−1
ϕ

〉

where Ã = �2A3�
⊥
2

(
η2�⊥

2 + iη�⊥
2 A3�

⊥
2 + �⊥

2 A†
2A2�

⊥
2

)−1
�⊥

2 A3�2. By (5.24),

Re Ã ≥ 0 on Ran(�2), which implies Re(�2 + Ã) ≥ 1 > 0 on Ran(�2).
Therefore, by Lemma 5.4 and Remark 5.5, we have that

lim
η→0

〈
ϕ, (I + i η−1A)−1ϕ

〉

= lim
η→0

〈
ϕ,
(
iη−1�2A3�2 + �2 + Ã

)−1
ϕ

〉

=
〈
�̃ϕ,

(
�̃ + �̃�2A3�

⊥
2

(
�⊥

2 A†
2A2�

⊥
2

)−1
�⊥

2 A3�2�̃

)−1

�̃ϕ

〉
, (5.27)

where �̃ = projection onto the kernel of �2A3�2.
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Putting (5.25) and (5.27) together, we have that
〈
�̃ϕ,

(
�̃ + �̃�2A3�

⊥
2

(
�⊥

2 A†
2A2�

⊥
2

)−1
�⊥

2 A3�2 �̃

)−1

�̃ϕ

〉
= ‖�ϕ‖2 ,

which completes the proof of Lemma 5.6.

Now we can proceed to prove (2.15) in Theorem 2.11. As showed in Equation (4.31)
and Lemma 5.1, the diffusion matrix D(λ) is independent of the initial condition ψ0 ∈
�2(Zd). To study the asymptotic behavior of D(λ), it is enough to consider ψ0(x) = δ0,
where we assume the ballistic motion holds in (2.14).

Proof of (2.15). We are going to apply Lemma 5.6 to A acting on Ĥ1 ⊕ Ĥ2 given by:

A = P(K̂0 + Û)P =
(

0 P1K̂0P2
P2K̂0P1 P2(K̂0 + Û)P2

)
, (5.28)

where Ĥi , Pi , i = 1, 2 are as in (4.11) and P = P1 + P2. Let � = projection onto the
kernel of P(K̂0 + Û)P , �2 = projection onto the kernel of P1K̂0P2 and �̃ = projection
onto the kernel of �2(K̂0 + Û)�2.

Let φ̃ j = ∂ j K̂0ϕ0, j = 1 . . . , d, which are given as in (3.26). Recall that φ̃ j ∈
Ker(P1K̂0P2), therefore φ̃ j = �2φ̃ j . Let Mi, j be as in (5.10) and ρ̂0;k be as in (3.31).
By the decomposition in Lemma 5.2 at λ = 0, one can check that 2

2

〈
φ̃ j ,

(
P + η−1i(K̂0 + Û)

)−1
φ̃ j

〉
= η3

∫ ∞

0
e−η t M j, j (t) dt + O(η2). (5.29)

When λ = 0, L̂0 = i(K̂0 + Û) is the unperturbed periodic operator on �2(Zd; C
⊗p).

Setting η = 2T−1 in (2.14), there is a c > 0 such that for all j and η small,

η3
∫ ∞

0
e−η t M j, j (t) dt = 8

T 3

∫ ∞

0
e− 2t

T
∑

x∈Zd

x2j E

(
|ψt (x)|2

)
dt ≥ c > 0. (5.30)

Put (5.25), (5.29) and (5.30) together, we have

∥∥�φ̃ j
∥∥2 = lim

η→0

〈
φ̃ j ,

(
P + η−1i(K̂0 + Û)

)−1
φ̃ j

〉
> 0.

Therefore, �φ̃ j �= 0 and Lemma 5.6 implies that �̃φ̃ j �= 0.
Recall that L̂0 = iK̂0+iÛ+iλV̂+B and�2 = P2

(
iK̂0 + iÛ + λ2V̂ (P3L̂0P3)−1 V̂

)
P2

as in (4.15). Let Rλ = �2V̂
(
P3L̂0P3

)−1 V̂�2 and R0 = �2V̂
(
P3(iK̂0 + iÛ)P3

)−1 V̂�2.
Then �2�2�2 = i�2P2(K̂0 + Û)P2�2 + λ2Rλ and limλ→0 Rλ = R0 (in the strong
operator topology). Applying Lemma 5.4 (and Remark 5.5) to �2�2�2 on Ran(�2),
we obtain that, for any 1 ≤ i, j ≤ d,

2 This formula was obtained in [25], Section 4.7, where there is no error term O(η2). In [25], the choice
ψ0 = δ0 implies that Mj, j (0) = 0 and ρ̂0;0 = δ0 ⊗ −→

1 and the proof is relatively simple. In the general
p-periodic case, the initial condition δ0 no longer provides the simplified expressions of Mj, j (0) and ρ̂0;0. We
need the correction term for small η. The proof for the general case is essentially based on the same strategy
for Lemma 5.3; we omit the details here.
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lim
λ→0

λ2
〈
φ̃i , (�2�2�2)

−1 φ̃ j

〉
= lim

λ→0

〈
φ̃i ,

(
i λ−2�2(K̂0 + Û)�2 + Rλ

)−1
φ̃ j

〉

=
〈
�̃φ̃i ,

(
�̃R0�̃

)−1
�̃φ̃ j

〉
.

In particular, limλ→0 λ2
〈
φ̃ j , (�2�2�2)

−1 φ̃ j
〉 =

〈
�̃φ̃ j ,

(
�̃R0�̃

)−1
�̃φ̃ j

〉
> 0.

By Lemmas 4.9 and (4.31), we have

lim
λ→0

λ2∂i∂ j E(0) =
〈
�̃φ̃ j ,

(
�̃R0�̃

)−1
�̃φ̃i

〉
+
〈
�̃φ̃i ,

(
�̃R0�̃

)−1
�̃φ̃ j

〉
=: D0

i j .

Let D0 := (D0
i j )d×d . Then limλ→0 λ2D = D0 and

〈
k, D0k

〉
> 0 for any 0 �= k ∈ R

d

by the same argument for D. As a consequence,

lim
λ→0

λ2 tr D = tr D0 > 0.

This completes the proof of Theorem 1.2.
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Appendix A: Decomposition of the Second Moments and the Proof of Lemma 5.2

The following facts will be used to simplify the expression of the second order partial

derivative. Note that L̂0 ϕ0 = L̂†
0 ϕ0 = 0, implies that e−tL̂0 and e−tL̂†

0 act trivially on
ϕ0 for any t , i.e.,

e−tL̂0ϕ0 = e−tL̂†
0ϕ0 = ϕ0 (A.1)

and

e−tL̂0 Q0 = e−tL̂†
0 Q0 = Q0. (A.2)

On the other hand, recall the formula for differentiating a semi-group,

∂ j

(
e−tL̂k

)
= −

∫ t

0
e−(t−s)L̂k ∂ j L̂k e

−sL̂k ds. (A.3)

By (3.20) and (3.28), we have ∂ j L̂0 = i ∂ j K̂0 = −∂ j L̂†
0. Because ∂ j K̂0 maps Ĥ0 ⊕ Ĥ1

to Ĥ2, we also have that

Q0∂ j L̂0 = Q0∂ j L̂†
0 = 0; (A.4)

∂i∂ j L̂0 = i∂i∂ j K̂0 = −∂i∂ j L̂†
0 and Q0∂i∂ j L̂0 = Q0∂i∂ j L̂†

0 = 0. (A.5)
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Direct computation from (5.11) gives

Mi, j (t) = − ∂i∂ j

〈
ϕ0, e−tL̂k �k

〉∣∣∣
k=0

= −
〈
ϕ0 , e−tL̂0 ∂i∂ j�0

〉
(A.6)

−
〈
ϕ0 ,

(
∂ie

−tL̂0
)

|k=0
∂ j�0

〉
−
〈
ϕ0 ,

(
∂ je

−tL̂0
)

|k=0
∂i�0

〉
(A.7)

−
〈
ϕ0 ,

(
∂i∂ je

−tL̂0
)

|k=0
�0

〉
. (A.8)

Clearly, (A.6) gives the expression for N1 in (5.12). Now let’s proceed to simplify the
expression in (A.7). By the differential formula (A.3), we obtain
〈
ϕ0 ,

(
∂i e

−tL̂k
)

|k=0
∂ j�0

〉
=
〈
ϕ0 ,

(
−
∫ t

0
e−(t−s)L̂0 ∂i L̂0 e

−sL̂0 ds

)
∂ j�0

〉

= −
∫ t

0

〈
ϕ0 , ∂i L̂0 e

−sL̂0 (1 − Q0) ∂ j�0

〉
ds,

where we use the fact by (A.2) that
〈
ϕ0 , ∂i L̂0 e−sL̂0 Q0 ∂ j�0

〉
= 0. This gives the

expression for N2 in (5.13).
Simplifying (A.8) requires applying (A.3) twice. Differentiating (A.3) again yields,

∂i∂ j

(
e−tL̂k

)∣∣∣
k=0

= −
∫ t

0
e−(t−s)L̂0 ∂i∂ j L̂0 e

−sL̂0 ds

+
∫ t

0

(∫ t−s

0
e−(t−s−r)L̂0 ∂i L̂0 e

−rL̂0 dr

)
∂ j L̂0 e

−sL̂0 ds

+
∫ t

0
e−(t−s)L̂0 ∂ j L̂0

(∫ s

0
e−(s−r)L̂0 ∂i L̂0 e

−rL̂0 dr

)
ds.

Therefore,

−
〈
ϕ0 ,

(
∂i∂ je

−tL̂k
)

|k=0
�0

〉
=
∫ t

0

〈
ϕ0 , e−(t−s)L̂0 ∂i∂ j L̂0 e

−sL̂0 �0

〉
ds (A.9)

−
∫ t

0

∫ t−s

0

〈
ϕ0 , e−(t−s−r)L̂0 ∂i L̂0 e

−rL̂0∂ j L̂0 e
−sL̂0 �0

〉
dr ds (A.10)

−
∫ t

0

∫ s

0

〈
ϕ0 , e−(t−s)L̂0 ∂ j L̂0 e

−(s−r)L̂0 ∂i L̂0 e
−rL̂0 �0

〉
dr ds. (A.11)

The expression on the right hand side of (A.9) leads to N3 in (5.14) since
〈
ϕ0 , e−(t−s)L̂0 ∂i∂ j L̂0 e

−sL̂0 �0

〉
=
〈
∂i∂ j L̂†

0ϕ0 , e−sL̂0 (1 − Q0)�0

〉
.

Expressions for (A.10) and (A.11) follow from (A.2) and (A.4) by direct computations.
For (A.10) we have,

−
∫ t

0

∫ t−s

0

〈
ϕ0 , e−(t−s−r)L̂0 ∂i L̂0 e

−rL̂0∂ j L̂0 e
−sL̂0 �0

〉
dr ds
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= −
∫ t

0

∫ s

0

[〈
∂i L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂ j L̂0 e
−rL̂0 (1 − Q0)�0

〉
(A.12)

+
〈
∂i L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂ j L̂0 Q0�0

〉]
dr ds. (A.13)

Similarily, for (A.11),

−
∫ t

0

∫ s

0

〈
ϕ0 , e−(t−s)L̂0 ∂ j L̂0 e

−(s−r)L̂0 ∂i L̂0 e
−rL̂0 �0

〉
dr ds

= −
∫ t

0

∫ s

0

[〈
∂ j L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂i L̂0 e
−rL̂0 (1 − Q0)�0

〉
(A.14)

+
〈
∂ j L̂†

0 ϕ0 , e−(s−r)L̂0(1 − Q0)∂i L̂0 Q0�0

〉]
dr ds. (A.15)

Clearly,

N4 = (A.12) + (A.14), N5 = (A.13) + (A.15). (A.16)

This completes the proof of Lemma 5.2.
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